These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
607 related articles for article (PubMed ID: 30569512)
21. Biomass-Derived Oxygen and Nitrogen Co-Doped Porous Carbon with Hierarchical Architecture as Sulfur Hosts for High-Performance Lithium/Sulfur Batteries. Zhao Y; Wang L; Huang L; Maximov MY; Jin M; Zhang Y; Wang X; Zhou G Nanomaterials (Basel); 2017 Nov; 7(11):. PubMed ID: 29160854 [TBL] [Abstract][Full Text] [Related]
22. Full Dissolution of the Whole Lithium Sulfide Family (Li Cheng Q; Xu W; Qin S; Das S; Jin T; Li A; Li AC; Qie B; Yao P; Zhai H; Shi C; Yong X; Yang Y Angew Chem Int Ed Engl; 2019 Apr; 58(17):5557-5561. PubMed ID: 30779275 [TBL] [Abstract][Full Text] [Related]
23. A Samarium-Doped Carbon Aerogel Cathode with Anchored Polysulfides for Lithium-Sulfur Batteries with High Electrochemical Performance: A Metal-Organic Framework Template Method. Sheng H; Li X; Huang B; Wang J; Li X; Hua Y Chempluschem; 2019 Jul; 84(7):838-844. PubMed ID: 31943985 [TBL] [Abstract][Full Text] [Related]
24. A 3D Nitrogen-Doped Graphene/TiN Nanowires Composite as a Strong Polysulfide Anchor for Lithium-Sulfur Batteries with Enhanced Rate Performance and High Areal Capacity. Li Z; He Q; Xu X; Zhao Y; Liu X; Zhou C; Ai D; Xia L; Mai L Adv Mater; 2018 Nov; 30(45):e1804089. PubMed ID: 30259567 [TBL] [Abstract][Full Text] [Related]
26. Long-Life Lithium-Sulfur Battery Derived from Nori-Based Nitrogen and Oxygen Dual-Doped 3D Hierarchical Biochar. Wu X; Fan L; Wang M; Cheng J; Wu H; Guan B; Zhang N; Sun K ACS Appl Mater Interfaces; 2017 Jun; 9(22):18889-18896. PubMed ID: 28488854 [TBL] [Abstract][Full Text] [Related]
27. Unraveling the Atomic-Level Manipulation Mechanism of Li Shan J; Wang W; Zhang B; Wang X; Zhou W; Yue L; Li Y Adv Sci (Weinh); 2022 Nov; 9(33):e2204192. PubMed ID: 36202626 [TBL] [Abstract][Full Text] [Related]
28. Hierarchically porous carbon encapsulating sulfur as a superior cathode material for high performance lithium-sulfur batteries. Xu G; Ding B; Nie P; Shen L; Dou H; Zhang X ACS Appl Mater Interfaces; 2014 Jan; 6(1):194-9. PubMed ID: 24344876 [TBL] [Abstract][Full Text] [Related]
29. Synergy between Interconnected Porous Carbon-Sulfur Cathode and Metallic MgB Garapati MS; Sundara R ACS Omega; 2020 Sep; 5(35):22379-22388. PubMed ID: 32923795 [TBL] [Abstract][Full Text] [Related]
30. Confined Polysulfides in N-Doped 3D-CNTs Network for High Performance Lithium-Sulfur Batteries. Wang D; Zhou A; Yao Z; Xia X; Zhang Y Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683724 [TBL] [Abstract][Full Text] [Related]
31. Honeycomb-like Nitrogen and Sulfur Dual-Doped Hierarchical Porous Biomass-Derived Carbon for Lithium-Sulfur Batteries. Chen M; Jiang S; Huang C; Wang X; Cai S; Xiang K; Zhang Y; Xue J ChemSusChem; 2017 Apr; 10(8):1803-1812. PubMed ID: 28236432 [TBL] [Abstract][Full Text] [Related]
32. Catalytic VS Deng Y; Tang W; Zhu Y; Ma J; Zhou M; Shi Y; Yan P; Liu R Small Methods; 2023 Jun; 7(6):e2300186. PubMed ID: 37093188 [TBL] [Abstract][Full Text] [Related]
33. Nitrogen-doped MOF-derived micropores carbon as immobilizer for small sulfur molecules as a cathode for lithium sulfur batteries with excellent electrochemical performance. Li Z; Yin L ACS Appl Mater Interfaces; 2015 Feb; 7(7):4029-38. PubMed ID: 25625174 [TBL] [Abstract][Full Text] [Related]
34. Nitrogen and Sulfur Doped Porous Carbon Sheet with Trace Amount of Iron as Efficient Polysulfide Conversion Catalyst for High Loading Lithium-Sulfur Batteries. Sivaraj J; Dasari B; Subramani P; Pitchai J; Unni SM; Ramesha K Chemphyschem; 2024 Oct; ():e202400406. PubMed ID: 39394837 [TBL] [Abstract][Full Text] [Related]
35. Direct Synthesis of Carbon-Doped TiO2-Bronze Nanowires as Anode Materials for High Performance Lithium-Ion Batteries. Goriparti S; Miele E; Prato M; Scarpellini A; Marras S; Monaco S; Toma A; Messina GC; Alabastri A; De Angelis F; Manna L; Capiglia C; Zaccaria RP ACS Appl Mater Interfaces; 2015 Nov; 7(45):25139-46. PubMed ID: 26492841 [TBL] [Abstract][Full Text] [Related]
36. 3D Honeycomb Architecture Enables a High-Rate and Long-Life Iron (III) Fluoride-Lithium Battery. Wu F; Srot V; Chen S; Lorger S; van Aken PA; Maier J; Yu Y Adv Mater; 2019 Oct; 31(43):e1905146. PubMed ID: 31513323 [TBL] [Abstract][Full Text] [Related]
37. Anion-doped polypyrrole three-dimensional framework enables adsorption and conversion in lithium-sulfur batteries. Yu G; Wang CY; Dong W; Tian YW; Wang Z; Lu J; Hu P; Liu Y; Yan M; Li Y; Liu Z J Colloid Interface Sci; 2024 Jan; 654(Pt A):201-211. PubMed ID: 37839237 [TBL] [Abstract][Full Text] [Related]
38. Challenges and prospects of lithium-sulfur batteries. Manthiram A; Fu Y; Su YS Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063 [TBL] [Abstract][Full Text] [Related]
39. Li2S Nanocrystals Confined in Free-Standing Carbon Paper for High Performance Lithium-Sulfur Batteries. Wu M; Cui Y; Fu Y ACS Appl Mater Interfaces; 2015 Sep; 7(38):21479-86. PubMed ID: 26349017 [TBL] [Abstract][Full Text] [Related]
40. Advanced Li Hao Z; Chen J; Yuan L; Bing Q; Liu J; Chen W; Li Z; Wang FR; Huang Y Small; 2019 Dec; 15(50):e1902377. PubMed ID: 31721414 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]