These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 30569590)

  • 1. Screening of Some Essential Oil Constituents as Potential Inhibitors of the ATP Synthase of Escherichia coli.
    Issa D; Najjar A; Greige-Gerges H; Nehme H
    J Food Sci; 2019 Jan; 84(1):138-146. PubMed ID: 30569590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsic uncoupling in the ATP synthase of Escherichia coli.
    D'Alessandro M; Turina P; Melandri BA
    Biochim Biophys Acta; 2008 Dec; 1777(12):1518-27. PubMed ID: 18952048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Escherichia coli F1F0 ATP synthase displays biphasic synthesis kinetics.
    Tomashek JJ; Glagoleva OB; Brusilow WS
    J Biol Chem; 2004 Feb; 279(6):4465-70. PubMed ID: 14602713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A functionally inactive, cold-stabilized form of the Escherichia coli F1Fo ATP synthase.
    Galkin MA; Ishmukhametov RR; Vik SB
    Biochim Biophys Acta; 2006 Mar; 1757(3):206-14. PubMed ID: 16581013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of proton pumping efficiency in bacterial ATP synthases.
    Turina P; Rebecchi A; D'Alessandro M; Anefors S; Melandri BA
    Biochim Biophys Acta; 2006; 1757(5-6):320-5. PubMed ID: 16765908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Residue 249 in subunit beta regulates ADP inhibition and its phosphate modulation in Escherichia coli ATP synthase.
    Lapashina AS; Prikhodko AS; Shugaeva TE; Feniouk BA
    Biochim Biophys Acta Bioenerg; 2019 Mar; 1860(3):181-188. PubMed ID: 30528692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong inhibitory effects of curcumin and its demethoxy analog on Escherichia coli ATP synthase F1 sector.
    Sekiya M; Chiba E; Satoh M; Yamakoshi H; Iwabuchi Y; Futai M; Nakanishi-Matsui M
    Int J Biol Macromol; 2014 Sep; 70():241-5. PubMed ID: 25010476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Requirement of medium ADP for the steady-state hydrolysis of ATP by the proton-translocating Paracoccus denitrificans Fo.F1-ATP synthase.
    Zharova TV; Vinogradov AD
    Biochim Biophys Acta; 2006; 1757(5-6):304-10. PubMed ID: 16730637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two distinct proton binding sites in the ATP synthase family.
    von Ballmoos C; Dimroth P
    Biochemistry; 2007 Oct; 46(42):11800-9. PubMed ID: 17910472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative evaluation of the intrinsic uncoupling modulated by ADP and P(i) in the reconstituted ATP synthase of Escherichia coli.
    D'Alessandro M; Turina P; Melandri BA
    Biochim Biophys Acta; 2011 Jan; 1807(1):130-43. PubMed ID: 20800570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of fully assembled and active Aquifex aeolicus F1FO ATP synthase in Escherichia coli.
    Zhang C; Allegretti M; Vonck J; Langer JD; Marcia M; Peng G; Michel H
    Biochim Biophys Acta; 2014 Jan; 1840(1):34-40. PubMed ID: 24005236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of coupling in the Escherichia coli ATP synthase by ADP and P
    D'Alessandro M; Turina P; Melandri BA; Dunn SD
    Biochim Biophys Acta Bioenerg; 2017 Jan; 1858(1):34-44. PubMed ID: 27751906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of gamma T273 and gamma E275 with the beta subunit PSAV segment that links the gamma subunit to the catalytic site Walker homology B aspartate are important to the function of Escherichia coli F1F0 ATP synthase.
    Boltz KW; Frasch WD
    Biochemistry; 2005 Jul; 44(27):9497-506. PubMed ID: 15996104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential Inhibitory Effect of
    Nehme H; Ayde H; El Obeid D; Sabatier JM; Fajloun Z
    Antibiotics (Basel); 2020 Nov; 9(11):. PubMed ID: 33218209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of Escherichia coli ATP synthase by amphibian antimicrobial peptides.
    Laughlin TF; Ahmad Z
    Int J Biol Macromol; 2010 Apr; 46(3):367-74. PubMed ID: 20100509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphate efflux through the channels formed by colicins and phage T5 in Escherichia coli cells is responsible for the fall in cytoplasmic ATP.
    Guihard G; Bénédetti H; Besnard M; Letellier L
    J Biol Chem; 1993 Aug; 268(24):17775-80. PubMed ID: 7688731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A bi-site mechanism for Escherichia coli F1-ATPase accounts for the observed positive catalytic cooperativity.
    Bulygin VV; Milgrom YM
    Biochim Biophys Acta; 2009 Aug; 1787(8):1016-23. PubMed ID: 19269272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the partial reactions of rotational catalysis in F1-ATPase.
    Scanlon JA; Al-Shawi MK; Le NP; Nakamoto RK
    Biochemistry; 2007 Jul; 46(30):8785-97. PubMed ID: 17620014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Escherichia coli FOF1 gammaM23K uncoupling mutant has a higher K0.5 for Pi. Transition state analysis of this mutant and others reveals that synthesis and hydrolysis utilize the same kinetic pathway.
    Al-Shawi MK; Ketchum CJ; Nakamoto RK
    Biochemistry; 1997 Oct; 36(42):12961-9. PubMed ID: 9335556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening of antitubercular compound library identifies novel ATP synthase inhibitors of Mycobacterium tuberculosis.
    Kumar S; Mehra R; Sharma S; Bokolia NP; Raina D; Nargotra A; Singh PP; Khan IA
    Tuberculosis (Edinb); 2018 Jan; 108():56-63. PubMed ID: 29523328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.