These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 305698)

  • 21. The development of the Purkinje cell in the cerebellar cortex of the opossum.
    Laxson LC; King JS
    J Comp Neurol; 1983 Mar; 214(3):290-308. PubMed ID: 6853759
    [No Abstract]   [Full Text] [Related]  

  • 22. Identification of acutely isolated cells from developing rat cerebellum.
    Hockberger PE; Yousif L; Nam SC
    Neuroimage; 1994 Nov; 1(4):276-87. PubMed ID: 9343577
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Current concepts on the "dark" cells of human and animal brains].
    Kvitnitskiĭ-Ryzhov IuN; Kvitnitskaia-Ryzhova TIu
    Tsitologiia; 1981 Feb; 23(2):116-28. PubMed ID: 6167034
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The pineal-paraphyseal complex of sea turtles. I. Light microscopic description.
    Owens DW; Ralph CL
    J Morphol; 1978 Nov; 158(2):169-79. PubMed ID: 731704
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Number of Purkinje cells with an increased DNA content in rat cerebellum].
    Marshak TL; Maresh V; Brodskiĭ VIa
    Tsitologiia; 1978 Jun; 20(6):651-6. PubMed ID: 695000
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photoreceptor layer composition in the retina of the frog (Rana esculenta).
    Reichenbach A; Fuchs U
    Gegenbaurs Morphol Jahrb; 1983; 129(3):299-305. PubMed ID: 6603996
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relationship between melanin content and superoxide dismutase (SOD) activity in the liver of various species of animals.
    Sichel G; Corsaro C; Scalia M; Sciuto S; Geremia E
    Cell Biochem Funct; 1987 Apr; 5(2):123-8. PubMed ID: 3495372
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cytochemical variations in Purkinje neuron nuclei of cerebellar areas with different afferent systems in Rana esculenta. Comparison between activity and hibernation.
    Bernocchi G
    J Hirnforsch; 1985; 26(6):659-65. PubMed ID: 3879258
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatial synaptic integration in Purkinje cell dendrites.
    Midtgaard J
    J Physiol Paris; 1995; 89(1):23-32. PubMed ID: 7581295
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Golgi apparatus of pale and dark Purkinje cells.
    Bosel'ová L; Ochodnická E; Magdolenová S; Moravcíková Y; Meitner ER
    Folia Morphol (Praha); 1978; 26(3):257-9. PubMed ID: 700538
    [No Abstract]   [Full Text] [Related]  

  • 31. The interrelations of the striatum with subcortical areas through the lateral forebrain bundle.
    Schnitzlein HN; Hamel EG; Carey JH; Brown JW; Hoffman HH; Faucette JR; Showers MJ
    J Hirnforsch; 1973; 13(6):409-55. PubMed ID: 4698256
    [No Abstract]   [Full Text] [Related]  

  • 32. [Seasonal changes in the ultrastructure of Leydig cells in Rana esculenta].
    Schulze C
    Verh Anat Ges; 1974; 68():255-9. PubMed ID: 4549596
    [No Abstract]   [Full Text] [Related]  

  • 33. Topological analysis of the brain stem of the frogs Rana esculenta and Rana catesbeiana.
    Opdam R; Kemali M; Nieuwenhuys R
    J Comp Neurol; 1976 Feb; 165(3):307-32. PubMed ID: 1083857
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lampbrush and mitotic chromosomes of the hemiclonally reproducing hybrid Rana esculenta and its parental species.
    Bucci S; Ragghianti M; Mancino G; Berger L; Hotz H; Uzzell T
    J Exp Zool; 1990 Jul; 255(1):37-56. PubMed ID: 2391468
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differentiation of Purkinje cells and their relationship to other components of developing cerebellar cortex in man.
    Zecevic N; Rakic P
    J Comp Neurol; 1976 May; 167(1):27-47. PubMed ID: 818132
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Calmodulin and calbindin localization in retina from six vertebrate species.
    Pochet R; Pasteels B; Seto-Ohshima A; Bastianelli E; Kitajima S; Van Eldik LJ
    J Comp Neurol; 1991 Dec; 314(4):750-62. PubMed ID: 1816273
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The microscopical structure and quantitative changes of pituitary cell populations in frogs (Rana esculenta L.) irradiated by ultraviolet light.
    Kasprzyk JM; Pawlicki R; Cichocki T
    Z Mikrosk Anat Forsch; 1980; 94(6):1090-104. PubMed ID: 6269309
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Morphological observations on the glands of the oesophagus and stomach of adult Rana esculenta and Bombina variegata.
    Bani G; Formigli L; Cecchi R
    Ital J Anat Embryol; 1992; 97(2):75-87. PubMed ID: 1285678
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sex differences in number of Gomori-positive cells in the telencephalon of Rana esculenta.
    Srebro Z; Dubis K
    Folia Biol (Krakow); 1972; 20(2):157-9. PubMed ID: 4124323
    [No Abstract]   [Full Text] [Related]  

  • 40. Similarities in the ultrastructural distribution of nerve growth factor receptor-like immunoreactivity in cerebellar Purkinje cells of the neonatal and colchicine-treated adult rat.
    Pioro EP; Ribeiro-Da-Silva A; Cuello AC
    J Comp Neurol; 1991 Mar; 305(2):189-200. PubMed ID: 1851186
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.