These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 30570185)

  • 1. Warmer and browner waters decrease fish biomass production.
    van Dorst RM; Gårdmark A; Svanbäck R; Beier U; Weyhenmeyer GA; Huss M
    Glob Chang Biol; 2019 Apr; 25(4):1395-1408. PubMed ID: 30570185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decrease of Population Divergence in Eurasian Perch (Perca fluviatilis) in Browning Waters: Role of Fatty Acids and Foraging Efficiency.
    Scharnweber K; Strandberg U; Karlsson K; Eklöv P
    PLoS One; 2016; 11(9):e0162470. PubMed ID: 27610617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Larval fish body growth responses to simultaneous browning and warming.
    Huss M; van Dorst RM; Gårdmark A
    Ecol Evol; 2021 Nov; 11(21):15132-15140. PubMed ID: 34765165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fish-mediated plankton responses to increased temperature in subtropical aquatic mesocosm ecosystems: Implications for lake management.
    He H; Jin H; Jeppesen E; Li K; Liu Z; Zhang Y
    Water Res; 2018 Nov; 144():304-311. PubMed ID: 30071399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased importance of cool-water fish at high latitudes emerges from individual-level responses to warming.
    Smalås A; Primicerio R; Kahilainen KK; Terentyev PM; Kashulin NA; Zubova EM; Amundsen PA
    Ecol Evol; 2023 Jun; 13(6):e10185. PubMed ID: 37293123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Allochthony, fatty acid and mercury trends in muscle of Eurasian perch (Perca fluviatilis) along boreal environmental gradients.
    Keva O; Kiljunen M; Hämäläinen H; Jones RI; Kahilainen KK; Kankaala P; Laine MB; Schilder J; Strandberg U; Vesterinen J; Taipale SJ
    Sci Total Environ; 2022 Sep; 838(Pt 1):155982. PubMed ID: 35588838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The interactions of abiotic and biotic factors influencing perch Perca fluviatilis and roach Rutilus rutilus populations in small acidified boreal lakes.
    Linløkken AN; Hesthagen T
    J Fish Biol; 2011 Aug; 79(2):431-48. PubMed ID: 21781101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bottom-up and top-down effects of browning and warming on shallow lake food webs.
    Vasconcelos FR; Diehl S; Rodríguez P; Hedström P; Karlsson J; Byström P
    Glob Chang Biol; 2019 Feb; 25(2):504-521. PubMed ID: 30430702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth, morphological variation and ontogenetic niche shifts in perch (Perca fluviatilis) in relation to resource availability.
    Hjelm J; Persson L; Christensen B
    Oecologia; 2000 Feb; 122(2):190-199. PubMed ID: 28308372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Community structure influences species' abundance along environmental gradients.
    Eloranta AP; Helland IP; Sandlund OT; Hesthagen T; Ugedal O; Finstad AG
    J Anim Ecol; 2016 Jan; 85(1):273-82. PubMed ID: 26475991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lake morphometry and resource polymorphism determine niche segregation between cool- and cold-water-adapted fish.
    Hayden B; Harrod C; Kahilaineni KK
    Ecology; 2014 Feb; 95(2):538-52. PubMed ID: 24669746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antagonistic effects of temperature and dissolved organic carbon on fish growth in California mountain lakes.
    Symons CC; Schulhof MA; Cavalheri HB; Shurin JB
    Oecologia; 2019 Jan; 189(1):231-241. PubMed ID: 30426209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climate and productivity affect total mercury concentration and bioaccumulation rate of fish along a spatial gradient of subarctic lakes.
    Ahonen SA; Hayden B; Leppänen JJ; Kahilainen KK
    Sci Total Environ; 2018 Oct; 637-638():1586-1596. PubMed ID: 29801252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature impacts on fish physiology and resource abundance lead to faster growth but smaller fish sizes and yields under warming.
    Lindmark M; Audzijonyte A; Blanchard JL; Gårdmark A
    Glob Chang Biol; 2022 Nov; 28(21):6239-6253. PubMed ID: 35822557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Humic substances-part 7: the biogeochemistry of dissolved organic carbon and its interactions with climate change.
    Porcal P; Koprivnjak JF; Molot LA; Dillon PJ
    Environ Sci Pollut Res Int; 2009 Sep; 16(6):714-26. PubMed ID: 19462191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetrical competition between aquatic primary producers in a warmer and browner world.
    Vasconcelos FR; Diehl S; Rodríguez P; Hedström P; Karlsson J; Byström P
    Ecology; 2016 Oct; 97(10):2580-2592. PubMed ID: 27859128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Larger but younger fish when growth outpaces mortality in heated ecosystem.
    Lindmark M; Karlsson M; Gårdmark A
    Elife; 2023 May; 12():. PubMed ID: 37157843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Individual variation and interactions explain food web responses to global warming.
    Gårdmark A; Huss M
    Philos Trans R Soc Lond B Biol Sci; 2020 Dec; 375(1814):20190449. PubMed ID: 33131431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological and ecological effects of increasing temperature on fish production in lakes of Arctic Alaska.
    Carey MP; Zimmerman CE
    Ecol Evol; 2014 May; 4(10):1981-93. PubMed ID: 24963391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concurrent warming and browning eliminate cold-water fish habitat in many temperate lakes.
    Jane SF; Detmer TM; Larrick SL; Rose KC; Randall EA; Jirka KJ; McIntyre PB
    Proc Natl Acad Sci U S A; 2024 Jan; 121(2):e2306906120. PubMed ID: 38165940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.