BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 30570314)

  • 1. Aversive distractors modulate affective working memory in frontoparietal regions.
    Stout DM; Bomyea J; Risbrough VB; Simmons AN
    Emotion; 2020 Mar; 20(2):286-295. PubMed ID: 30570314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissociation in human prefrontal cortex of affective influences on working memory-related activity.
    Perlstein WM; Elbert T; Stenger VA
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1736-41. PubMed ID: 11818573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Making the rich richer: Frontoparietal tDCS enhances transfer effects of a single-session distractor inhibition training on working memory in high capacity individuals but reduces them in low capacity individuals.
    Schmicker M; Menze I; Schneider C; Taubert M; Zaehle T; Mueller NG
    Neuroimage; 2021 Nov; 242():118438. PubMed ID: 34332042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Posterior Parietal Cortex Dysfunction Is Central to Working Memory Storage and Broad Cognitive Deficits in Schizophrenia.
    Hahn B; Robinson BM; Leonard CJ; Luck SJ; Gold JM
    J Neurosci; 2018 Sep; 38(39):8378-8387. PubMed ID: 30104335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Working Memory and Decision-Making in a Frontoparietal Circuit Model.
    Murray JD; Jaramillo J; Wang XJ
    J Neurosci; 2017 Dec; 37(50):12167-12186. PubMed ID: 29114071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Training the emotional brain: improving affective control through emotional working memory training.
    Schweizer S; Grahn J; Hampshire A; Mobbs D; Dalgleish T
    J Neurosci; 2013 Mar; 33(12):5301-11. PubMed ID: 23516294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of affective information on working memory: A pair of meta-analytic reviews of behavioral and neuroimaging evidence.
    Schweizer S; Satpute AB; Atzil S; Field AP; Hitchcock C; Black M; Barrett LF; Dalgleish T
    Psychol Bull; 2019 Jun; 145(6):566-609. PubMed ID: 31021136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reward expectancy-related prefrontal neuronal activities: are they neural substrates of "affective" working memory?
    Watanabe M; Hikosaka K; Sakagami M; Shirakawa S
    Cortex; 2007 Jan; 43(1):53-64. PubMed ID: 17334207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural patterns underlying the effect of negative distractors on working memory in older adults.
    Oren N; Ash EL; Tarrasch R; Hendler T; Giladi N; Shapira-Lichter I
    Neurobiol Aging; 2017 May; 53():93-102. PubMed ID: 28242539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ventromedial Prefrontal Cortex Drives the Prioritization of Self-Associated Stimuli in Working Memory.
    Yin S; Bi T; Chen A; Egner T
    J Neurosci; 2021 Mar; 41(9):2012-2023. PubMed ID: 33462089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adolescent cannabis use and brain systems supporting adult working memory encoding, maintenance, and retrieval.
    Tervo-Clemmens B; Simmonds D; Calabro FJ; Day NL; Richardson GA; Luna B
    Neuroimage; 2018 Apr; 169():496-509. PubMed ID: 29253654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of ketamine on cognition-emotion interaction in the brain.
    Scheidegger M; Henning A; Walter M; Boeker H; Weigand A; Seifritz E; Grimm S
    Neuroimage; 2016 Jan; 124(Pt A):8-15. PubMed ID: 26348558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural correlates of the difference between working memory speed and simple sensorimotor speed: an fMRI study.
    Takeuchi H; Sugiura M; Sassa Y; Sekiguchi A; Yomogida Y; Taki Y; Kawashima R
    PLoS One; 2012; 7(1):e30579. PubMed ID: 22291992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Verbal and visuospatial working memory during pregnancy: EEG correlation between the prefrontal and parietal cortices.
    Almanza-Sepúlveda ML; Hernández-González M; Hevia-Orozco JC; Amezcua-Gutiérrez C; Guevara MA
    Neurobiol Learn Mem; 2018 Feb; 148():1-7. PubMed ID: 29277581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dorsolateral Prefrontal Cortex GABA Concentration in Humans Predicts Working Memory Load Processing Capacity.
    Yoon JH; Grandelis A; Maddock RJ
    J Neurosci; 2016 Nov; 36(46):11788-11794. PubMed ID: 27852785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prefrontal-parietal effective connectivity during working memory in older adults.
    Heinzel S; Lorenz RC; Duong QL; Rapp MA; Deserno L
    Neurobiol Aging; 2017 Sep; 57():18-27. PubMed ID: 28578155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parietal structure and function explain human variation in working memory biases of visual attention.
    Soto D; Rotshtein P; Kanai R
    Neuroimage; 2014 Apr; 89():289-96. PubMed ID: 24287439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. rTMS evidence of different delay and decision processes in a fronto-parietal neuronal network activated during spatial working memory.
    Koch G; Oliveri M; Torriero S; Carlesimo GA; Turriziani P; Caltagirone C
    Neuroimage; 2005 Jan; 24(1):34-9. PubMed ID: 15588594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Cortical functional connectivity during retention of affective pictures in working memory: EEG-source theta coherence analysis].
    Machinskaya RI; Rozovskaya RI; Kurgansky AV; Pechenkova EV
    Fiziol Cheloveka; 2016; 42(3):56-73. PubMed ID: 29446897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic adjustments in working memory in the face of affective interference.
    Witkin JE; Zanesco AP; Denkova E; Jha AP
    Mem Cognit; 2020 Jan; 48(1):16-31. PubMed ID: 31385241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.