These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 30570314)

  • 21. Intercommunication between prefrontal and posterior brain regions for protecting visual working memory from distractor interference.
    Liesefeld AM; Liesefeld HR; Zimmer HD
    Psychol Sci; 2014 Feb; 25(2):325-33. PubMed ID: 24379152
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impaired regulation of emotional distractors during working memory load in schizophrenia.
    Guimond S; Padani S; Lutz O; Eack S; Thermenos H; Keshavan M
    J Psychiatr Res; 2018 Jun; 101():14-20. PubMed ID: 29524918
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acute and past subjective stress influence working memory and related neural substrates.
    Luettgau L; Schlagenhauf F; Sjoerds Z
    Psychoneuroendocrinology; 2018 Oct; 96():25-34. PubMed ID: 29879562
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Opposing influences of emotional and non-emotional distracters upon sustained prefrontal cortex activity during a delayed-response working memory task.
    Dolcos F; Diaz-Granados P; Wang L; McCarthy G
    Neuropsychologia; 2008 Jan; 46(1):326-35. PubMed ID: 17765933
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Developmental differences in prefrontal activation during working memory maintenance and manipulation for different memory loads.
    Jolles DD; Kleibeuker SW; Rombouts SA; Crone EA
    Dev Sci; 2011 Jul; 14(4):713-24. PubMed ID: 21676092
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dissociated roles of the parietal and frontal cortices in the scope and control of attention during visual working memory.
    Li S; Cai Y; Liu J; Li D; Feng Z; Chen C; Xue G
    Neuroimage; 2017 Apr; 149():210-219. PubMed ID: 28131893
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prefrontal-posterior parietal networks in schizophrenia: primary dysfunctions and secondary compensations.
    Quintana J; Wong T; Ortiz-Portillo E; Kovalik E; Davidson T; Marder SR; Mazziotta JC
    Biol Psychiatry; 2003 Jan; 53(1):12-24. PubMed ID: 12513941
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neural mechanisms of interference control underlie the relationship between fluid intelligence and working memory span.
    Burgess GC; Gray JR; Conway ARA; Braver TS
    J Exp Psychol Gen; 2011 Nov; 140(4):674-692. PubMed ID: 21787103
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced control of dorsolateral prefrontal cortex neurophysiology with real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback training and working memory practice.
    Sherwood MS; Kane JH; Weisend MP; Parker JG
    Neuroimage; 2016 Jan; 124(Pt A):214-223. PubMed ID: 26348555
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Working memory dysfunction associated with brain functional deficits and cellular metabolic changes in patients with generalized anxiety disorder.
    Moon CM; Sundaram T; Choi NG; Jeong GW
    Psychiatry Res Neuroimaging; 2016 Aug; 254():137-44. PubMed ID: 27442922
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Superior Intraparietal Sulcus Controls the Variability of Visual Working Memory Precision.
    Galeano Weber EM; Peters B; Hahn T; Bledowski C; Fiebach CJ
    J Neurosci; 2016 May; 36(20):5623-35. PubMed ID: 27194340
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neural markers of category-based selective working memory in aging.
    Mok RM; O'Donoghue MC; Myers NE; Drazich EHS; Nobre AC
    Neuroimage; 2019 Jul; 194():163-173. PubMed ID: 30905834
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Complementary roles of medial temporal lobes and mid-dorsolateral prefrontal cortex for working memory for novel and familiar trial-unique visual stimuli.
    Schon K; Ross RS; Hasselmo ME; Stern CE
    Eur J Neurosci; 2013 Feb; 37(4):668-78. PubMed ID: 23167976
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulation of Frontoparietal Neurovascular Dynamics in Working Memory.
    Ardestani A; Shen W; Darvas F; Toga AW; Fuster JM
    J Cogn Neurosci; 2016 Mar; 28(3):379-401. PubMed ID: 26679214
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the relationship between negative affective priming and prefrontal cognitive control mechanisms.
    Falquez R; Lang S; Dinu-Biringer R; Nees F; Arens E; Kotchoubey B; Berger M; Barnow S
    Cogn Emot; 2016; 30(2):225-44. PubMed ID: 25648386
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Top-down modulation: bridging selective attention and working memory.
    Gazzaley A; Nobre AC
    Trends Cogn Sci; 2012 Feb; 16(2):129-35. PubMed ID: 22209601
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ventral fronto-parietal contributions to the disruption of visual working memory storage.
    Hakun JG; Ravizza SM
    Neuroimage; 2016 Jan; 124(Pt A):783-793. PubMed ID: 26436710
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dissociation within the frontoparietal network in verbal working memory: a parametric functional magnetic resonance imaging study.
    Champod AS; Petrides M
    J Neurosci; 2010 Mar; 30(10):3849-56. PubMed ID: 20220020
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Working memory filtering continues to develop into late adolescence.
    Peverill M; McLaughlin KA; Finn AS; Sheridan MA
    Dev Cogn Neurosci; 2016 Apr; 18():78-88. PubMed ID: 27026657
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of fMRI activation at 3 and 1.5 T during perceptual, cognitive, and affective processing.
    Krasnow B; Tamm L; Greicius MD; Yang TT; Glover GH; Reiss AL; Menon V
    Neuroimage; 2003 Apr; 18(4):813-26. PubMed ID: 12725758
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.