BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 30570724)

  • 1. Genetic Manipulation of Lytic Bacteriophages with BRED: Bacteriophage Recombineering of Electroporated DNA.
    Marinelli LJ; Piuri M; Hatfull GF
    Methods Mol Biol; 2019; 1898():69-80. PubMed ID: 30570724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mycobacterial recombineering.
    van Kessel JC; Hatfull GF
    Methods Mol Biol; 2008; 435():203-15. PubMed ID: 18370078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of BRED technology to construct recombinant D29 reporter phage expressing EGFP.
    da Silva JL; Piuri M; Broussard G; Marinelli LJ; Bastos GM; Hirata RD; Hatfull GF; Hirata MH
    FEMS Microbiol Lett; 2013 Jul; 344(2):166-72. PubMed ID: 23651353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic Biology to Engineer Bacteriophage Genomes.
    Rita Costa A; Milho C; Azeredo J; Pires DP
    Methods Mol Biol; 2018; 1693():285-300. PubMed ID: 29119447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recombineering in Mycobacterium tuberculosis.
    van Kessel JC; Hatfull GF
    Nat Methods; 2007 Feb; 4(2):147-52. PubMed ID: 17179933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic manipulation of phages for therapy using BRED.
    Payaslian F; Gradaschi V; Piuri M
    Curr Opin Biotechnol; 2021 Apr; 68():8-14. PubMed ID: 33039679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BRED: a simple and powerful tool for constructing mutant and recombinant bacteriophage genomes.
    Marinelli LJ; Piuri M; Swigonová Z; Balachandran A; Oldfield LM; van Kessel JC; Hatfull GF
    PLoS One; 2008; 3(12):e3957. PubMed ID: 19088849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of mycobacteria and mycobacteriophages isolated from compost at the São Paulo Zoo Park Foundation in Brazil and creation of the new mycobacteriophage Cluster U.
    Lima-Junior JD; Viana-Niero C; Conde Oliveira DV; Machado GE; Rabello MC; Martins-Junior J; Martins LF; Digiampietri LA; da Silva AM; Setubal JC; Russell DA; Jacobs-Sera D; Pope WH; Hatfull GF; Leão SC
    BMC Microbiol; 2016 Jun; 16(1):111. PubMed ID: 27316672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPY-BRED and CRISPY-BRIP: efficient bacteriophage engineering.
    Wetzel KS; Guerrero-Bustamante CA; Dedrick RM; Ko CC; Freeman KG; Aull HG; Divens AM; Rock JM; Zack KM; Hatfull GF
    Sci Rep; 2021 Mar; 11(1):6796. PubMed ID: 33762639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Weirdo19ES is a novel singleton mycobacteriophage that selects for glycolipid deficient phage-resistant M. smegmatis mutants.
    Suarez CA; Franceschelli JJ; Tasselli SE; Morbidoni HR
    PLoS One; 2020; 15(5):e0231881. PubMed ID: 32357186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mycobacterial recombineering.
    Murphy KC; Papavinasasundaram K; Sassetti CM
    Methods Mol Biol; 2015; 1285():177-99. PubMed ID: 25779316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mycobacteriophages: From Petri dish to patient.
    Hatfull GF
    PLoS Pathog; 2022 Jul; 18(7):e1010602. PubMed ID: 35797343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The in vitro killing of intracellular Mycobacterium smegmatis by Mycobacteriophage].
    Peng L; Chen BW; Luo YA; Shen XB; Li YL; Wang GZ
    Zhonghua Jie He He Hu Xi Za Zhi; 2005 Sep; 28(9):619-22. PubMed ID: 16207431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mycobacteriophage-repressor-mediated immunity as a selectable genetic marker: Adephagia and BPs repressor selection.
    Petrova ZO; Broussard GW; Hatfull GF
    Microbiology (Reading); 2015 Aug; 161(8):1539-1551. PubMed ID: 26066798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recombineering mycobacteria and their phages.
    van Kessel JC; Marinelli LJ; Hatfull GF
    Nat Rev Microbiol; 2008 Nov; 6(11):851-7. PubMed ID: 18923412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient and simple generation of unmarked gene deletions in Mycobacterium smegmatis.
    Shenkerman Y; Elharar Y; Vishkautzan M; Gur E
    Gene; 2014 Jan; 533(1):374-8. PubMed ID: 24100088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient point mutagenesis in mycobacteria using single-stranded DNA recombineering: characterization of antimycobacterial drug targets.
    van Kessel JC; Hatfull GF
    Mol Microbiol; 2008 Mar; 67(5):1094-107. PubMed ID: 18221264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic characterization of mycobacteriophage Giles: evidence for phage acquisition of host DNA by illegitimate recombination.
    Morris P; Marinelli LJ; Jacobs-Sera D; Hendrix RW; Hatfull GF
    J Bacteriol; 2008 Mar; 190(6):2172-82. PubMed ID: 18178732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A high-efficiency recombineering system with PCR-based ssDNA in Bacillus subtilis mediated by the native phage recombinase GP35.
    Sun Z; Deng A; Hu T; Wu J; Sun Q; Bai H; Zhang G; Wen T
    Appl Microbiol Biotechnol; 2015 Jun; 99(12):5151-62. PubMed ID: 25750031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic Biology to Engineer Bacteriophage Genomes.
    Costa AR; Azeredo J; Pires DP
    Methods Mol Biol; 2024; 2734():261-277. PubMed ID: 38066375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.