These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 30571226)

  • 1. Testing Computer Models Predicting Human Responses to a High-Salt Diet.
    Kurtz TW; DiCarlo SE; Pravenec M; Ježek F; Šilar J; Kofránek J; Morris RC
    Hypertension; 2018 Dec; 72(6):1407-1416. PubMed ID: 30571226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the contribution of Guyton's large circulatory model to long-term control of arterial pressure.
    Montani JP; Van Vliet BN
    Exp Physiol; 2009 Apr; 94(4):382-8. PubMed ID: 19286638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Speculations on salt and the genesis of arterial hypertension.
    Titze J; Luft FC
    Kidney Int; 2017 Jun; 91(6):1324-1335. PubMed ID: 28501304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of blood pressure salt sensitivity: new insights from mathematical modeling.
    Clemmer JS; Pruett WA; Coleman TG; Hall JE; Hester RL
    Am J Physiol Regul Integr Comp Physiol; 2017 Apr; 312(4):R451-R466. PubMed ID: 27974315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical review: Guyton--the role of mean circulatory filling pressure and right atrial pressure in controlling cardiac output.
    Henderson WR; Griesdale DE; Walley KR; Sheel AW
    Crit Care; 2010; 14(6):243. PubMed ID: 21144008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changing views on the common physiologic abnormality that mediates salt sensitivity and initiation of salt-induced hypertension: Japanese research underpinning the vasodysfunction theory of salt sensitivity.
    Kurtz TW; DiCarlo SE; Pravenec M; Morris RC
    Hypertens Res; 2019 Jan; 42(1):6-18. PubMed ID: 30390036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding Guyton's venous return curves.
    Beard DA; Feigl EO
    Am J Physiol Heart Circ Physiol; 2011 Sep; 301(3):H629-33. PubMed ID: 21666119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bench-to-bedside review: An approach to hemodynamic monitoring--Guyton at the bedside.
    Magder S
    Crit Care; 2012 Oct; 16(5):236. PubMed ID: 23106914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Algebraic formulas characterizing an alternative to Guyton's graphical analysis relevant for heart failure.
    Stiles TW; Morfin Rodriguez AE; Mohiuddin HS; Lee H; Dalal FA; Fuertes WW; Adams TH; Stewart RH; Quick CM
    Am J Physiol Regul Integr Comp Physiol; 2021 Jun; 320(6):R851-R870. PubMed ID: 33596744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The obligatory role of the kidney in long-term arterial blood pressure control: extending Guyton's model of the circulation.
    Dorrington KL; Pandit JJ
    Anaesthesia; 2009 Nov; 64(11):1218-28. PubMed ID: 19825058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new conceptual paradigm for the haemodynamics of salt-sensitive hypertension: a mathematical modelling approach.
    Averina VA; Othmer HG; Fink GD; Osborn JW
    J Physiol; 2012 Dec; 590(23):5975-92. PubMed ID: 22890716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The blood pressure-salt sensitivity paradigm: pathophysiologically sound yet of no practical value.
    Galletti F; Strazzullo P
    Nephrol Dial Transplant; 2016 Sep; 31(9):1386-91. PubMed ID: 27521374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virtual patients and sensitivity analysis of the Guyton model of blood pressure regulation: towards individualized models of whole-body physiology.
    Moss R; Grosse T; Marchant I; Lassau N; Gueyffier F; Thomas SR
    PLoS Comput Biol; 2012; 8(6):e1002571. PubMed ID: 22761561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism-based strategies to prevent salt sensitivity and salt-induced hypertension.
    Kurtz TW; Pravenec M; DiCarlo SE
    Clin Sci (Lond); 2022 Apr; 136(8):599-620. PubMed ID: 35452099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular-based mechanisms of Mendelian forms of salt-dependent hypertension: questioning the prevailing theory.
    Kurtz TW; Dominiczak AF; DiCarlo SE; Pravenec M; Morris RC
    Hypertension; 2015 May; 65(5):932-41. PubMed ID: 25753977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mechanism for salt-sensitive hypertension: abnormal dietary sodium-mediated vascular response to angiotensin-II.
    Chamarthi B; Williams JS; Williams GH
    J Hypertens; 2010 May; 28(5):1020-6. PubMed ID: 20216091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An update on the relationship between the kidney, salt and hypertension.
    Mayer G
    Wien Med Wochenschr; 2008; 158(13-14):365-9. PubMed ID: 18677586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protective effects of dietary potassium chloride on hemodynamics of Dahl salt-sensitive rats in response to chronic administration of sodium chloride.
    Manger WM; Simchon S; Stier CT; Loscalzo J; Jan KM; Jan R; Haddy F
    J Hypertens; 2003 Dec; 21(12):2305-13. PubMed ID: 14654751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of Salt Intake on the Pathogenesis and Treatment of Hypertension.
    Rust P; Ekmekcioglu C
    Adv Exp Med Biol; 2017; 956():61-84. PubMed ID: 27757935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Venous return and mean systemic filling pressure: physiology and clinical applications.
    Persichini R; Lai C; Teboul JL; Adda I; Guérin L; Monnet X
    Crit Care; 2022 May; 26(1):150. PubMed ID: 35610620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.