BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 30571990)

  • 1. Infraslow oscillations in human sleep spindle activity.
    Lázár ZI; Dijk DJ; Lázár AS
    J Neurosci Methods; 2019 Mar; 316():22-34. PubMed ID: 30571990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of an automated sleep spindle detection method for mouse electroencephalography.
    Uygun DS; Katsuki F; Bolortuya Y; Aguilar DD; McKenna JT; Thankachan S; McCarley RW; Basheer R; Brown RE; Strecker RE; McNally JM
    Sleep; 2019 Feb; 42(2):. PubMed ID: 30476300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling of gamma band activity to sleep spindle oscillations - a combined EEG/MEG study.
    Weber FD; Supp GG; Klinzing JG; Mölle M; Engel AK; Born J
    Neuroimage; 2021 Jan; 224():117452. PubMed ID: 33059050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The space-time profiles of sleep spindles and their coordination with slow oscillations on the electrode manifold.
    Malerba P; Whitehurst L; Mednick SC
    Sleep; 2022 Aug; 45(8):. PubMed ID: 35666552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of γ and spindle-range power by slow oscillations in scalp sleep EEG of children.
    Piantoni G; Astill RG; Raymann RJ; Vis JC; Coppens JE; Van Someren EJ
    Int J Psychophysiol; 2013 Aug; 89(2):252-8. PubMed ID: 23403325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spindle activity phase-locked to sleep slow oscillations.
    Klinzing JG; Mölle M; Weber F; Supp G; Hipp JF; Engel AK; Born J
    Neuroimage; 2016 Jul; 134():607-616. PubMed ID: 27103135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slow spindles are associated with cortical high frequency activity.
    Hashemi NS; Dehnavi F; Moghimi S; Ghorbani M
    Neuroimage; 2019 Apr; 189():71-84. PubMed ID: 30639838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A sleep spindle detection algorithm that emulates human expert spindle scoring.
    Lacourse K; Delfrate J; Beaudry J; Peppard P; Warby SC
    J Neurosci Methods; 2019 Mar; 316():3-11. PubMed ID: 30107208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Density and frequency caudo-rostral gradients of sleep spindles recorded in the human cortex.
    Peter-Derex L; Comte JC; Mauguière F; Salin PA
    Sleep; 2012 Jan; 35(1):69-79. PubMed ID: 22215920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Season is related to the slow wave and sigma activity of infants and toddlers.
    Kärki A; Satomaa AL; Huhtala H; Saastamoinen A; Saarenpää-Heikkilä O; Paavonen EJ; Himanen SL
    Sleep Med; 2022 Dec; 100():364-377. PubMed ID: 36201888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alterations in sleep, sleep spindle, and EEG power in mGluR5 knockout mice.
    Aguilar DD; Strecker RE; Basheer R; McNally JM
    J Neurophysiol; 2020 Jan; 123(1):22-33. PubMed ID: 31747354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental Changes in Sleep Spindle Characteristics and Sigma Power across Early Childhood.
    McClain IJ; Lustenberger C; Achermann P; Lassonde JM; Kurth S; LeBourgeois MK
    Neural Plast; 2016; 2016():3670951. PubMed ID: 27110405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Looking for a precursor of spontaneous Sleep Slow Oscillations in human sleep: The role of the sigma activity.
    Menicucci D; Piarulli A; Allegrini P; Bedini R; Bergamasco M; Laurino M; Sebastiani L; Gemignani A
    Int J Psychophysiol; 2015 Aug; 97(2):99-107. PubMed ID: 26003553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of sleep spindles and coupling to slow oscillations following motor learning in adult mice.
    Kam K; Pettibone WD; Shim K; Chen RK; Varga AW
    Neurobiol Learn Mem; 2019 Dec; 166():107100. PubMed ID: 31622665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic coupling between slow waves and sleep spindles during slow wave sleep in humans is modulated by functional pre-sleep activation.
    Yordanova J; Kirov R; Verleger R; Kolev V
    Sci Rep; 2017 Nov; 7(1):14496. PubMed ID: 29101344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An attempt to identify reproducible high-density EEG markers of PTSD during sleep.
    Wang C; Ramakrishnan S; Laxminarayan S; Dovzhenok A; Cashmere JD; Germain A; Reifman J
    Sleep; 2020 Jan; 43(1):. PubMed ID: 31553047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral and temporal characterization of sleep spindles-methodological implications.
    Gomez-Pilar J; Gutiérrez-Tobal GC; Poza J; Fogel S; Doyon J; Northoff G; Hornero R
    J Neural Eng; 2021 Mar; 18(3):. PubMed ID: 33618345
    [No Abstract]   [Full Text] [Related]  

  • 18. Fragments of wake-like activity frame down-states of sleep slow oscillations in humans: new vistas for studying homeostatic processes during sleep.
    Menicucci D; Piarulli A; Allegrini P; Laurino M; Mastorci F; Sebastiani L; Bedini R; Gemignani A
    Int J Psychophysiol; 2013 Aug; 89(2):151-7. PubMed ID: 23384886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topographical distribution of fast and slow sleep spindles in medicated depressive patients.
    Nishida M; Nakashima Y; Nishikawa T
    J Clin Neurophysiol; 2014 Oct; 31(5):402-8. PubMed ID: 25271676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thalamic and neocortical differences in the relationship between the time course of delta and sigma power during NREM sleep in humans.
    Sarasso S; Zubler F; Pigorini A; Sartori I; Castana L; Nobili L
    J Sleep Res; 2021 Jun; 30(3):e13166. PubMed ID: 32830381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.