These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 30572234)

  • 41. Photocatalytic degradation of toluene vapour using fixed bed multichannel photoreactors equipped with TiO2-coated fabrics.
    Park OH; Na HY
    Environ Technol; 2008 Sep; 29(9):1001-7. PubMed ID: 18844127
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of metal-ion doping on the characteristics and photocatalytic activity of TiO2 nanotubes for the removal of toluene from water.
    Yuan R; Zhou B; Hua D; Shi C; Ma L
    Water Sci Technol; 2014; 69(8):1697-704. PubMed ID: 24759531
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Low-temperature preparation of TiO2/PS/Fe3O4, and its photocatalytic activity and magnetic recovery].
    Wang XJ; Ren XC; Nian JN; Xiao JQ; Wang G; Chang Q
    Huan Jing Ke Xue; 2012 Aug; 33(8):2752-8. PubMed ID: 23213901
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Photocatalytic degradation of furfural in aqueous solution by N-doped titanium dioxide nanoparticles.
    Veisi F; Zazouli MA; Ebrahimzadeh MA; Charati JY; Dezfoli AS
    Environ Sci Pollut Res Int; 2016 Nov; 23(21):21846-21860. PubMed ID: 27525742
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Photocatalytic degradation of mixed gaseous carbonyl compounds at low level on adsorptive TiO2/SiO2 photocatalyst using a fluidized bed reactor.
    Zhang M; An T; Fu J; Sheng G; Wang X; Hu X; Ding X
    Chemosphere; 2006 Jun; 64(3):423-31. PubMed ID: 16412494
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Photocatalytic degradation of phenol in natural seawater using visible light active carbon modified (CM)-n-TiO2 nanoparticles under UV light and natural sunlight illuminations.
    Shaban YA; El Sayed MA; El Maradny AA; Al Farawati RKh; Al Zobidi MI
    Chemosphere; 2013 Apr; 91(3):307-13. PubMed ID: 23261126
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Photochemistry of the indoor air pollutant acetone on Degussa P25 TiO2 studied by chemical ionization mass spectrometry.
    Schmidt CM; Buchbinder AM; Weitz E; Geiger FM
    J Phys Chem A; 2007 Dec; 111(50):13023-31. PubMed ID: 18031025
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthesis of nanostructured titanium dioxide layer onto kaolin hollow fibre membrane via hydrothermal method for decolourisation of reactive black 5.
    Mohtor NH; Othman MHD; Bakar SA; Kurniawan TA; Dzinun H; Norddin MNAM; Rajis Z
    Chemosphere; 2018 Oct; 208():595-605. PubMed ID: 29890498
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fabrication and photocatalytic activities in visible and UV light regions of Ag@TiO2 and NiAg@TiO2 nanoparticles.
    Chuang HY; Chen DH
    Nanotechnology; 2009 Mar; 20(10):105704. PubMed ID: 19417532
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Solvothermal synthesis, characterization and photocatalytic property of zirconium dioxide doped titanium dioxide spinous hollow microspheres with sunflower pollen as bio-templates.
    Zhao J; Ge S; Pan D; Shao Q; Lin J; Wang Z; Hu Z; Wu T; Guo Z
    J Colloid Interface Sci; 2018 Nov; 529():111-121. PubMed ID: 29886223
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enhanced xylene removal by photocatalytic oxidation using fiber-illuminated honeycomb reactor at ppb level.
    Wu YT; Yu YH; Nguyen VH; Lu KT; Wu JC; Chang LM; Kuo CW
    J Hazard Mater; 2013 Nov; 262():717-25. PubMed ID: 24140520
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hybrid Ag@TiO2 core-shell nanostructures with highly enhanced photocatalytic performance.
    Yang XH; Fu HT; Wong K; Jiang XC; Yu AB
    Nanotechnology; 2013 Oct; 24(41):415601. PubMed ID: 24045164
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Photocatalytic degradation of an azo-dye on TiO2/activated carbon composite material.
    Andriantsiferana C; Mohamed EF; Delmas H
    Environ Technol; 2014; 35(1-4):355-63. PubMed ID: 24600875
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Photocatalytic activity for hydrogen evolution of electrospun TiO2 nanofibers.
    Chuangchote S; Jitputti J; Sagawa T; Yoshikawa S
    ACS Appl Mater Interfaces; 2009 May; 1(5):1140-3. PubMed ID: 20355902
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Photocatalytic degradation of gaseous dibenzofuran by TiO2 doped with Fe3+, Ce3+].
    Xia QB; Huang SS; Zhang ZJ; Li Z
    Huan Jing Ke Xue; 2009 Nov; 30(11):3177-83. PubMed ID: 20063726
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Preparation, characterization, and photocatalytic activity evaluation of Fe-N-codoped TiO
    Song J; Wang X; Bu Y; Zhang J; Wang X; Huang J; Chen J; Zhao J
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22793-22802. PubMed ID: 27566155
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Life cycle assessment comparison of photocatalytic coating and air purifier.
    Tichá M; Žilka M; Stieberová B; Freiberg F
    Integr Environ Assess Manag; 2016 Jul; 12(3):478-85. PubMed ID: 27082715
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hybrid BiOBr-TiO2 nanocomposites with high visible light photocatalytic activity for water treatment.
    Wei XX; Cui H; Guo S; Zhao L; Li W
    J Hazard Mater; 2013 Dec; 263 Pt 2():650-8. PubMed ID: 24220195
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Thiourea-Modified TiO2 Nanorods with Enhanced Photocatalytic Activity.
    Wu X; Fang S; Zheng Y; Sun J; Lv K
    Molecules; 2016 Feb; 21(2):181. PubMed ID: 26840294
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparison study on photocatalytic oxidation of pharmaceuticals by TiO
    Lin L; Wang H; Jiang W; Mkaouar AR; Xu P
    J Hazard Mater; 2017 Jul; 333():162-168. PubMed ID: 28351797
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.