BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 30572250)

  • 1. Revisiting fish toxicity of active pharmaceutical ingredients: Mechanistic insights from integrated ligand-/structure-based assessments on acetylcholinesterase.
    Minovski N; Saçan MT; Eminoğlu EM; Erdem SS; Novič M
    Ecotoxicol Environ Saf; 2019 Apr; 170():548-558. PubMed ID: 30572250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and functional characterization of the interaction of the photosensitizing probe methylene blue with Torpedo californica acetylcholinesterase.
    Paz A; Roth E; Ashani Y; Xu Y; Shnyrov VL; Sussman JL; Silman I; Weiner L
    Protein Sci; 2012 Aug; 21(8):1138-52. PubMed ID: 22674800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The complex of a bivalent derivative of galanthamine with torpedo acetylcholinesterase displays drastic deformation of the active-site gorge: implications for structure-based drug design.
    Greenblatt HM; Guillou C; Guénard D; Argaman A; Botti S; Badet B; Thal C; Silman I; Sussman JL
    J Am Chem Soc; 2004 Dec; 126(47):15405-11. PubMed ID: 15563167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Docking of the alkaloid geissospermine into acetylcholinesterase: a natural scaffold targeting the treatment of Alzheimer's disease.
    Araújo JQ; Lima JA; Pinto Ada C; de Alencastro RB; Albuquerque MG
    J Mol Model; 2011 Jun; 17(6):1401-12. PubMed ID: 20844909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acetylcholinesterase complexed with bivalent ligands related to huperzine a: experimental evidence for species-dependent protein-ligand complementarity.
    Wong DM; Greenblatt HM; Dvir H; Carlier PR; Han YF; Pang YP; Silman I; Sussman JL
    J Am Chem Soc; 2003 Jan; 125(2):363-73. PubMed ID: 12517147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D structure of Torpedo californica acetylcholinesterase complexed with huprine X at 2.1 A resolution: kinetic and molecular dynamic correlates.
    Dvir H; Wong DM; Harel M; Barril X; Orozco M; Luque FJ; Muñoz-Torrero D; Camps P; Rosenberry TL; Silman I; Sussman JL
    Biochemistry; 2002 Mar; 41(9):2970-81. PubMed ID: 11863435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hazard of pharmaceuticals for aquatic environment: Prioritization by structural approaches and prediction of ecotoxicity.
    Sangion A; Gramatica P
    Environ Int; 2016 Oct; 95():131-43. PubMed ID: 27568576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of a complex of the potent and specific inhibitor BW284C51 with Torpedo californica acetylcholinesterase.
    Felder CE; Harel M; Silman I; Sussman JL
    Acta Crystallogr D Biol Crystallogr; 2002 Oct; 58(Pt 10 Pt 2):1765-71. PubMed ID: 12351819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis, biological activity and molecular modeling studies on 1H-benzimidazole derivatives as acetylcholinesterase inhibitors.
    Alpan AS; Parlar S; Carlino L; Tarikogullari AH; Alptüzün V; Güneş HS
    Bioorg Med Chem; 2013 Sep; 21(17):4928-37. PubMed ID: 23891231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxime-dipeptides as anticholinesterase, reactivator of phosphonylated-serine of AChE catalytic triad: probing the mechanistic insight by MM-GBSA, dynamics simulations and DFT analysis.
    Chadha N; Tiwari AK; Kumar V; Lal S; Milton MD; Mishra AK
    J Biomol Struct Dyn; 2015; 33(5):978-90. PubMed ID: 24805972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Docking study of enantiomeric fonofos oxon bound to the active site of Torpedo californica acetylcholinesterase.
    Hirashima A; Kuwano E; Eto M
    Bioorg Med Chem; 2000 Mar; 8(3):653-6. PubMed ID: 10732982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray structures of Torpedo californica acetylcholinesterase complexed with (+)-huperzine A and (-)-huperzine B: structural evidence for an active site rearrangement.
    Dvir H; Jiang HL; Wong DM; Harel M; Chetrit M; He XC; Jin GY; Yu GL; Tang XC; Silman I; Bai DL; Sussman JL
    Biochemistry; 2002 Sep; 41(35):10810-8. PubMed ID: 12196020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of 3D-QSAR Model for Acetylcholinesterase Inhibitors Using a Combination of Fingerprint, Molecular Docking, and Structure-Based Pharmacophore Approaches.
    Lee S; Barron MG
    Toxicol Sci; 2015 Nov; 148(1):60-70. PubMed ID: 26202430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic and structural studies on the interactions of Torpedo californica acetylcholinesterase with two donepezil-like rigid analogues.
    Caliandro R; Pesaresi A; Cariati L; Procopio A; Oliverio M; Lamba D
    J Enzyme Inhib Med Chem; 2018 Dec; 33(1):794-803. PubMed ID: 29651884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of molecular descriptors for design of novel Isoalloxazine derivatives as potential Acetylcholinesterase inhibitors against Alzheimer's disease.
    Gurung AB; Aguan K; Mitra S; Bhattacharjee A
    J Biomol Struct Dyn; 2017 Jun; 35(8):1729-1742. PubMed ID: 27410776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined 3D-QSAR, molecular docking, and molecular dynamics study of tacrine derivatives as potential acetylcholinesterase (AChE) inhibitors of Alzheimer's disease.
    Zhou A; Hu J; Wang L; Zhong G; Pan J; Wu Z; Hui A
    J Mol Model; 2015 Oct; 21(10):277. PubMed ID: 26438408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational flexibility in the peripheral site of Torpedo californica acetylcholinesterase revealed by the complex structure with a bifunctional inhibitor.
    Colletier JP; Sanson B; Nachon F; Gabellieri E; Fattorusso C; Campiani G; Weik M
    J Am Chem Soc; 2006 Apr; 128(14):4526-7. PubMed ID: 16594661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In silico approaches to evaluate the molecular properties of organophosphate compounds to inhibit acetylcholinesterase activity in housefly.
    Marimuthu P; Lee YJ; Kim B; Seo SS
    J Biomol Struct Dyn; 2019 Feb; 37(2):307-320. PubMed ID: 29322868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular docking study on the "back door" hypothesis for product clearance in acetylcholinesterase.
    Alisaraie L; Fels G
    J Mol Model; 2006 Feb; 12(3):348-54. PubMed ID: 16341717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Affinities of bispyridinium non-oxime compounds to [(3)H]epibatidine binding sites of Torpedo californica nicotinic acetylcholine receptors depend on linker length.
    Niessen KV; Seeger T; Tattersall JE; Timperley CM; Bird M; Green C; Thiermann H; Worek F
    Chem Biol Interact; 2013 Dec; 206(3):545-54. PubMed ID: 24157926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.