These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 30572301)

  • 1. A 0.5-T pure-in-plane-field magnetizing holder for in-situ Lorentz microscopy.
    Sugawara A; Shimakura T; Nishihara H; Akashi T; Takahashi Y; Moriya N; Sugaya M
    Ultramicroscopy; 2019 Feb; 197():105-111. PubMed ID: 30572301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An in-situ magnetising holder achieving 1.5 T in-plane field in 200 kV transmission electron microscope.
    Bai T; Sun X; Qin J; Li F; Gao Q; Xia W; Chen R; Yan A; Li W
    Ultramicroscopy; 2024 Jun; 260():113950. PubMed ID: 38493522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a specimen holder for in situ generation of pure in-plane magnetic fields in a transmission electron microscope.
    Uhlig T; Heumann M; Zweck J
    Ultramicroscopy; 2003 Apr; 94(3-4):193-6. PubMed ID: 12524189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-scale characterization by FIB-SEM/TEM/3DAP.
    Ohkubo T; Sepehri-Amin H; Sasaki TT; Hono K
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i6-i7. PubMed ID: 25359845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a magnetizing stage for in situ observations with electron holography and Lorentz microscopy.
    Inoue M; Tomita T; Naruse M; Akase Z; Murakami Y; Shindo D
    J Electron Microsc (Tokyo); 2005 Dec; 54(6):509-13. PubMed ID: 16415046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A cartridge-based turning specimen holder with wireless tilt angle measurement for magnetic induction mapping in the transmission electron microscope.
    Diehle P; Kovács A; Duden T; Speen R; Žagar Soderžnik K; Dunin-Borkowski RE
    Ultramicroscopy; 2021 Jan; 220():113098. PubMed ID: 33161222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional visualization of dislocations in a ferromagnetic material by magnetic-field-free electron tomography.
    Hasezaki KL; Saito H; Sannomiya T; Miyazaki H; Gondo T; Miyazaki S; Hata S
    Ultramicroscopy; 2017 Nov; 182():249-257. PubMed ID: 28779615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impulse Magnetization of Nd-Fe-B Sintered Magnets for Sensors.
    Przybylski M; Kapelski D; Ślusarek B; Wiak S
    Sensors (Basel); 2016 Apr; 16(4):. PubMed ID: 27110783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative in situ magnetization reversal studies in Lorentz microscopy and electron holography.
    Rodríguez LA; Magén C; Snoeck E; Gatel C; Marín L; Serrano-Ramón L; Prieto JL; Muñoz M; Algarabel PA; Morellon L; De Teresa JM; Ibarra MR
    Ultramicroscopy; 2013 Nov; 134():144-54. PubMed ID: 23831132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron holography of magnetic field generated by a magnetic recording head.
    Goto T; Jeong JS; Xia W; Akase Z; Shindo D; Hirata K
    Microscopy (Oxf); 2013 Jun; 62(3):383-9. PubMed ID: 23291267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A straightforward specimen holder modification for remnant magnetic-field measurement in TEM.
    Lau JW; Schofield MA; Zhu Y
    Ultramicroscopy; 2007; 107(4-5):396-400. PubMed ID: 17140734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Permanent-magnet energy spectrometer for electron beams from radiotherapy accelerators.
    McLaughlin DJ; Hogstrom KR; Carver RL; Gibbons JP; Shikhaliev PM; Matthews KL; Clarke T; Henderson A; Liang EP
    Med Phys; 2015 Sep; 42(9):5517-29. PubMed ID: 26328999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic domain wall dynamics studied by in-situ Lorentz microscopy with aid of custom-made Hall-effect sensor holder.
    Honkanen M; Lukinmaa H; Kaappa S; Santa-Aho S; Kajan J; Savolainen S; Azzari L; Laurson L; Palosaari M; Vippola M
    Ultramicroscopy; 2024 Aug; 262():113979. PubMed ID: 38703575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of therapeutic electron beam tracking through a non-uniform magnetic field using finite element method.
    Tahmasebibirgani MJ; Maskani R; Behrooz MA; Zabihzadeh M; Shahbazian H; Fatahiasl J; Chegeni N
    Electron Physician; 2017 Apr; 9(4):4171-4179. PubMed ID: 28607652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accounting for the fringe magnetic field from the bending magnet in a Monte Carlo accelerator treatment head simulation.
    O'Shea TP; Foley MJ; Faddegon BA
    Med Phys; 2011 Jun; 38(6):3260-9. PubMed ID: 21815400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Domain and Microstructure of Resin-Bonded Magnets.
    Dośpiał MJ
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34073430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ Lorentz microscopy in an alternating magnetic field.
    Akase Z; Shindo D
    J Electron Microsc (Tokyo); 2010; 59(3):207-13. PubMed ID: 20083675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ observations of domain structures and magnetic flux distributions in Mn-Zn and Ni-Zn ferrites by Lorentz microscopy and electron holography.
    Kasahara T; Shindo D; Yoshikawa H; Sato T; Kondo K
    J Electron Microsc (Tokyo); 2007 Jan; 56(1):7-16. PubMed ID: 17229763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 4D Lorentz electron microscopy imaging: magnetic domain wall nucleation, reversal, and wave velocity.
    Park HS; Baskin JS; Zewail AH
    Nano Lett; 2010 Sep; 10(9):3796-803. PubMed ID: 20735136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a novel straining holder for transmission electron microscopy compatible with single tilt-axis electron tomography.
    Sato K; Miyazaki H; Gondo T; Miyazaki S; Murayama M; Hata S
    Microscopy (Oxf); 2015 Oct; 64(5):369-75. PubMed ID: 25904643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.