These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Generation of attosecond gigawatt soft x-ray pulses through coherent Thomson backscattering. Ma Q; Liu J; Pan Z; Wu X; Lu H; Wang Z; Xia Y; Chen Y; Miller KG; Xu X; Yan X Phys Rev E; 2024 Jun; 109(6-2):065205. PubMed ID: 39020960 [TBL] [Abstract][Full Text] [Related]
24. Attosecond streaking measurement of extreme ultraviolet pulses using a long-wavelength electric field. Saito N; Ishii N; Kanai T; Watanabe S; Itatani J Sci Rep; 2016 Oct; 6():35594. PubMed ID: 27752115 [TBL] [Abstract][Full Text] [Related]
25. Generation and Characterization of Attosecond Microbunched Electron Pulse Trains via Dielectric Laser Acceleration. Schönenberger N; Mittelbach A; Yousefi P; McNeur J; Niedermayer U; Hommelhoff P Phys Rev Lett; 2019 Dec; 123(26):264803. PubMed ID: 31951447 [TBL] [Abstract][Full Text] [Related]
26. Isolated terawatt attosecond hard X-ray pulse generated from single current spike. Shim CH; Parc YW; Kumar S; Ko IS; Kim DE Sci Rep; 2018 May; 8(1):7463. PubMed ID: 29748612 [TBL] [Abstract][Full Text] [Related]
27. Vacuum ultraviolet coherent undulator radiation from attosecond electron bunches. Brunetti E; van der Geer B; de Loos M; Dewhurst KA; Kornaszewski A; Maitrallain A; Muratori BD; Owen HL; Wiggins SM; Jaroszynski DA Sci Rep; 2021 Jul; 11(1):14595. PubMed ID: 34272418 [TBL] [Abstract][Full Text] [Related]
28. Femtosecond Single Cycle Pulses Enhanced the Efficiency of High Order Harmonic Generation. Taoutioui A; Agueny H Micromachines (Basel); 2021 May; 12(6):. PubMed ID: 34073368 [TBL] [Abstract][Full Text] [Related]
29. Compact undulator line for a high-brilliance soft-X-ray free-electron laser at MAX IV. Mak A; Salén P; Goryashko V J Synchrotron Radiat; 2019 May; 26(Pt 3):891-898. PubMed ID: 31074454 [TBL] [Abstract][Full Text] [Related]
30. Two-color field for the generation of an isolated attosecond pulse in water-window region. Chen W; Chen G; Kim DE Opt Express; 2011 Oct; 19(21):20610-5. PubMed ID: 21997069 [TBL] [Abstract][Full Text] [Related]
33. ABCD formalism and attosecond few-cycle pulse via chirp manipulation of a seeded free electron laser. Wu J; Bolton PR; Murphy JB; Wang K Opt Express; 2007 Oct; 15(20):12749-54. PubMed ID: 19550543 [TBL] [Abstract][Full Text] [Related]
34. Ponderomotive Generation and Detection of Attosecond Free-Electron Pulse Trains. Kozák M; Schönenberger N; Hommelhoff P Phys Rev Lett; 2018 Mar; 120(10):103203. PubMed ID: 29570333 [TBL] [Abstract][Full Text] [Related]
35. Attosecond lighthouses: how to use spatiotemporally coupled light fields to generate isolated attosecond pulses. Vincenti H; Quéré F Phys Rev Lett; 2012 Mar; 108(11):113904. PubMed ID: 22540475 [TBL] [Abstract][Full Text] [Related]
36. Boosting photoabsorption by attosecond control of electron correlation. Hu SX Phys Rev Lett; 2013 Sep; 111(12):123003. PubMed ID: 24093257 [TBL] [Abstract][Full Text] [Related]
37. Towards isolated attosecond electron bunches using ultrashort-pulse laser-solid interactions. Lin J; Batson T; Nees J; Thomas AGR; Krushelnick K Sci Rep; 2020 Oct; 10(1):18354. PubMed ID: 33110187 [TBL] [Abstract][Full Text] [Related]