BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 30572888)

  • 1. Optimal combination of electrodes and conductive gels for brain electrical impedance tomography.
    Yang L; Li H; Ding J; Li W; Dong X; Wen Z; Shi X
    Biomed Eng Online; 2018 Dec; 17(1):186. PubMed ID: 30572888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-Invasive Electrical Impedance Tomography for Multi-Scale Detection of Liver Fat Content.
    Luo Y; Abiri P; Zhang S; Chang CC; Kaboodrangi AH; Li R; Sahib AK; Bui A; Kumar R; Woo M; Li Z; Packard RRS; Tai YC; Hsiai TK
    Theranostics; 2018; 8(6):1636-1647. PubMed ID: 29556346
    [No Abstract]   [Full Text] [Related]  

  • 3. Development of an Electrical Impedance Tomography Coupled Surgical Stapler for Tissue Characterization.
    Murphy EK; Devaraj H; Eschbach M; Knapp R; Holden B; Halter RJ
    IEEE Trans Biomed Eng; 2024 Jan; 71(1):97-105. PubMed ID: 37440379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Versatile and Reproducible Multi-Frequency Electrical Impedance Tomography System.
    Avery J; Dowrick T; Faulkner M; Goren N; Holder D
    Sensors (Basel); 2017 Jan; 17(2):. PubMed ID: 28146122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An analytic solution to the homogeneous EIT problem on the 2D disk and its application to estimation of electrode contact impedances.
    Demidenko E
    Physiol Meas; 2011 Sep; 32(9):1453-71. PubMed ID: 21799240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexi-EIT: A Flexible and Reconfigurable Active Electrode Electrical Impedance Tomography System.
    Wang C; Lu W; Huang J; Guo Q; Zhou T; Zhao J; Li Y
    IEEE Trans Biomed Circuits Syst; 2024 Feb; 18(1):89-99. PubMed ID: 37607145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fascicle localisation within peripheral nerves through evoked activity recordings: A comparison between electrical impedance tomography and multi-electrode arrays.
    Ravagli E; Mastitskaya S; Thompson N; Welle EJ; Chestek CA; Aristovich K; Holder D
    J Neurosci Methods; 2021 Jul; 358():109140. PubMed ID: 33774053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A non-invasive approach to skin cancer diagnosis via graphene electrical tattoos and electrical impedance tomography.
    Lee H; Johnson Z; Denton S; Liu N; Akinwande D; Porter E; Kireev D
    Physiol Meas; 2024 May; 45(5):. PubMed ID: 38599226
    [No Abstract]   [Full Text] [Related]  

  • 9. Applications of Electrical Impedance Tomography in Neurology.
    Mirhoseini M; Rezanejad Gatabi Z; Das S; Joveini S; Rezanezhad Gatabi I
    Basic Clin Neurosci; 2022; 13(5):595-608. PubMed ID: 37313030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applied machine learning for stroke differentiation by electrical impedance tomography with realistic numerical models.
    Culpepper J; Lee H; Santorelli A; Porter E
    Biomed Phys Eng Express; 2023 Dec; 10(1):. PubMed ID: 37939489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Excitation Frequency on the Performance of Peripheral Blood Flow Imaging using Electrical Impedance Tomography.
    Kondo M; Yoshimoto S; Yamamoto A
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Quantitative Evaluation of Drive Pattern Selection for Optimizing EIT-Based Stretchable Sensors.
    Russo S; Nefti-Meziani S; Carbonaro N; Tognetti A
    Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28858252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of an Adaptive Current Source for EIT Driving Loads through a Shielded Coaxial Cable.
    Abdelwahab A; Shishvan OR; Saulnier GJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1448-1451. PubMed ID: 33018263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of Invasive Ductal Carcinoma in Quadrant Breast Areas by Electrical Impedance Tomography Implemented with Gaussian relaxation-time Distribution (EIT-GRTD).
    Setyawan G; Sejati PA; Ogawa R; Ibrahim KA; Fujimoto H; Yamamoto H; Takei M
    Biomed Phys Eng Express; 2024 Jul; ():. PubMed ID: 38955134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrode-Skin Impedance Model Parameter Estimation in the Frequency-Domain.
    Cameron CJ; Fortune BC; Pretty CG; Hayes MP
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time Evolution of the Skin-Electrode Interface Impedance under Different Skin Treatments.
    Murphy BB; Scheid BH; Hendricks Q; Apollo NV; Litt B; Vitale F
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-Term Electrode-Skin Impedance Variation for Electromyographic Measurements.
    Sousa ASP; Noites A; Vilarinho R; Santos R
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Modified Howland Current Source Design for Simultaneous EIT/ECG Data Acquisition.
    Abdelwahab A; Shishvan OR; Saulnier GJ
    Int J Bioelectromagn; 2022 Aug; 24(Suppl 1):208-211. PubMed ID: 37927612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrocardiogram Cream Reduces Skin-Electrode Impedance Upon Neuromuscular Monitoring Using TOF-Cuff®.
    Sugimura S; Khanh HV; Kawashima S; Nakajima Y; Kinoshita H
    Cureus; 2023 Sep; 15(9):e44670. PubMed ID: 37799239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variable sensitivity multimaterial robotic e-skin combining electronic and ionic conductivity using electrical impedance tomography.
    Costa Cornellà A; Hardman D; Costi L; Brancart J; Van Assche G; Iida F
    Sci Rep; 2023 Nov; 13(1):20004. PubMed ID: 37968442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.