BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 30573261)

  • 1. Micropatterning of beta tricalcium phosphate bioceramic surfaces, by femtosecond laser, for bone marrow stem cells behavior assessment.
    Lasgorceix M; Ott C; Boilet L; Hocquet S; Leriche A; Asadian M; De Geyter N; Declercq H; Lardot V; Cambier F
    Mater Sci Eng C Mater Biol Appl; 2019 Feb; 95():371-380. PubMed ID: 30573261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wetting effects on in vitro bioactivity and in vitro biocompatibility of laser micro-textured Ca-P coating.
    Paital SR; Cao Z; He W; Dahotre NB
    Biofabrication; 2010 Jun; 2(2):025001. PubMed ID: 20811129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale surface characterization of biphasic calcium phosphate, with comparisons to calcium hydroxyapatite and β-tricalcium phosphate bioceramics.
    França R; Samani TD; Bayade G; Yahia L; Sacher E
    J Colloid Interface Sci; 2014 Apr; 420():182-8. PubMed ID: 24559717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical and morphological investigation of silver and zinc modified calcium phosphate bioceramic coatings on metallic implant materials.
    Furko M; Jiang Y; Wilkins TA; Balázsi C
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():249-59. PubMed ID: 26952421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrastructural characteristics of ovine bone marrow-derived mesenchymal stromal cells cultured with a silicon stabilized tricalcium phosphate bioceramic.
    Desantis S; Accogli G; Burk J; Zizza S; Mastrodonato M; Francioso EG; Rossi R; Crovace A; Resta L
    Microsc Res Tech; 2017 Nov; 80(11):1189-1198. PubMed ID: 28799674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Femtosecond laser controlled wettability of solid surfaces.
    Yong J; Chen F; Yang Q; Hou X
    Soft Matter; 2015 Dec; 11(46):8897-906. PubMed ID: 26415826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Femtosecond laser induced fixation of calcium alkali phosphate ceramics on titanium alloy bone implant material.
    Symietz C; Lehmann E; Gildenhaar R; Krüger J; Berger G
    Acta Biomater; 2010 Aug; 6(8):3318-24. PubMed ID: 20167296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy dispersive X-ray diffraction study of phase development during hardening of calcium phosphate bone cements with addition of chitosan.
    Rau JV; Generosi A; Smirnov VV; Ferro D; Rossi Albertini V; Barinov SM
    Acta Biomater; 2008 Jul; 4(4):1089-94. PubMed ID: 18308650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The microstructure and surface morphology of radiopaque tricalcium silicate cement exposed to different curing conditions.
    Formosa LM; Mallia B; Bull T; Camilleri J
    Dent Mater; 2012 May; 28(5):584-95. PubMed ID: 22410112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sintering of biphasic calcium phosphates.
    Brown O; McAfee M; Clarke S; Buchanan F
    J Mater Sci Mater Med; 2010 Aug; 21(8):2271-9. PubMed ID: 20232235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wettability and kinetics of hydroxyapatite precipitation on a laser-textured Ca-P bioceramic coating.
    Paital SR; Dahotre NB
    Acta Biomater; 2009 Sep; 5(7):2763-72. PubMed ID: 19362524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser surface modification of AZ31B Mg alloy for bio-wettability.
    Ho YH; Vora HD; Dahotre NB
    J Biomater Appl; 2015 Feb; 29(7):915-28. PubMed ID: 25201909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of strontium on the synthesis and surface properties of biphasic calcium phosphate (BCP) bioceramics.
    Kanchana P; Sekar C
    J Appl Biomater Biomech; 2010; 8(3):153-8. PubMed ID: 21337306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of bioactive β-tricalcium phosphate microspheres as bone graft substitute materials.
    Li B; Liu Z; Yang J; Yi Z; Xiao W; Liu X; Yang X; Xu W; Liao X
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 2):1200-1205. PubMed ID: 27772722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BS-SEM evaluation of the tissular interactions between cortical bone and calcium-phosphate covered titanium implants.
    Manzanares MC; Franch J; Carvalho P; Belmonte AM; Tusell J; Franch B; Fernandez JM; Clèries L; Morenza JL
    Bull Group Int Rech Sci Stomatol Odontol; 2001; 43(3):100-8. PubMed ID: 11938587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of surface undulations of biphasic calcium phosphate tablets on human osteoblast behavior.
    dos Santos EA; Linhares AB; Rossi AM; Farina M; Soares GA
    J Biomed Mater Res A; 2005 Sep; 74(3):315-24. PubMed ID: 16010665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and properties of α-calcium sulphate hemihydrate and β-tricalcium phosphate bone substitute.
    Mao K; Zhou F; Cui F; Li J; Hou X; Li P; Du M; Liang M; Wang Y
    Biomed Mater Eng; 2013; 23(3):197-210. PubMed ID: 23629533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tricalcium phosphate-Fluorapatite as bone tissue engineering: Evaluation of bioactivity and biocompatibility.
    Taktak R; Elghazel A; Bouaziz J; Charfi S; Keskes H
    Mater Sci Eng C Mater Biol Appl; 2018 May; 86():121-128. PubMed ID: 29525087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique.
    Zhou Z; Buchanan F; Mitchell C; Dunne N
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():1-10. PubMed ID: 24656346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo.
    Xin R; Leng Y; Chen J; Zhang Q
    Biomaterials; 2005 Nov; 26(33):6477-86. PubMed ID: 15992923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.