These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 30573269)
1. PVP - CMC hydrogel: An excellent bioinspired and biocompatible scaffold for osseointegration. Saha N; Shah R; Gupta P; Mandal BB; Alexandrova R; Sikiric MD; Saha P Mater Sci Eng C Mater Biol Appl; 2019 Feb; 95():440-449. PubMed ID: 30573269 [TBL] [Abstract][Full Text] [Related]
2. Biocompatibility and Biological Efficiency of Inorganic Calcium Filled Bacterial Cellulose Based Hydrogel Scaffolds for Bone Bioengineering. Basu P; Saha N; Alexandrova R; Andonova-Lilova B; Georgieva M; Miloshev G; Saha P Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30544895 [TBL] [Abstract][Full Text] [Related]
3. [PREPARATION AND BIOCOMPATIBILITY EVALUATION OF A FUNCTIONAL SELF-ASSEMBLING PEPTIDE NANOFIBER HYDROGEL DESIGNED WITH LINKING THE SHORT FUNCTIONAL MOTIF OF BONE MORPHOGENETIC PROTEIN 7]. Liu L; Wu Y; Tao H; Jia Z; Li X; Wang D; He Q; Ruan D Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Apr; 30(4):491-8. PubMed ID: 27411281 [TBL] [Abstract][Full Text] [Related]
4. Glucuronoxylan-based quince seed hydrogel: A promising scaffold for tissue engineering applications. Guzelgulgen M; Ozkendir-Inanc D; Yildiz UH; Arslan-Yildiz A Int J Biol Macromol; 2021 Jun; 180():729-738. PubMed ID: 33757854 [TBL] [Abstract][Full Text] [Related]
5. Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying. Grenier J; Duval H; Barou F; Lv P; David B; Letourneur D Acta Biomater; 2019 Aug; 94():195-203. PubMed ID: 31154055 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction. Park HJ; Min KD; Lee MC; Kim SH; Lee OJ; Ju HW; Moon BM; Lee JM; Park YR; Kim DW; Jeong JY; Park CH J Biomed Mater Res A; 2016 Jul; 104(7):1779-87. PubMed ID: 26999521 [TBL] [Abstract][Full Text] [Related]
7. Marine macromolecules cross-linked hydrogel scaffolds as physiochemically and biologically favorable entities for tissue engineering applications. Sumayya AS; Muraleedhara Kurup G J Biomater Sci Polym Ed; 2017 Jun; 28(9):807-825. PubMed ID: 28287033 [TBL] [Abstract][Full Text] [Related]
8. Poly (L-lactic acid) porous scaffold-supported alginate hydrogel with improved mechanical properties and biocompatibility. Chu J; Zeng S; Gao L; Groth T; Li Z; Kong J; Zhao M; Li L Int J Artif Organs; 2016 Oct; 39(8):435-443. PubMed ID: 27646631 [TBL] [Abstract][Full Text] [Related]
9. Self-crosslinking effect of chitosan and gelatin on alginate based hydrogels: Injectable in situ forming scaffolds. Naghizadeh Z; Karkhaneh A; Khojasteh A Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():256-264. PubMed ID: 29752097 [TBL] [Abstract][Full Text] [Related]
10. Bioactive hydrogel-nanosilica hybrid materials: a potential injectable scaffold for bone tissue engineering. Lewandowska-Łańcucka J; Fiejdasz S; Rodzik Ł; Kozieł M; Nowakowska M Biomed Mater; 2015 Feb; 10(1):015020. PubMed ID: 25668107 [TBL] [Abstract][Full Text] [Related]
11. Bone-like apatite formation in biocompatible phosphate-crosslinked bacterial cellulose-based hydrogels for bone tissue engineering applications. Suneetha M; Kim H; Han SS Int J Biol Macromol; 2024 Jan; 256(Pt 2):128364. PubMed ID: 38000603 [TBL] [Abstract][Full Text] [Related]
12. Fabrication and development of artificial osteochondral constructs based on cancellous bone/hydrogel hybrid scaffold. Song K; Li L; Yan X; Zhang Y; Li R; Wang Y; Wang L; Wang H; Liu T J Mater Sci Mater Med; 2016 Jun; 27(6):114. PubMed ID: 27180235 [TBL] [Abstract][Full Text] [Related]
13. Fabrication and characterization of Spinacia oleracea extract incorporated alginate/carboxymethyl cellulose microporous scaffold for bone tissue engineering. Sharmila G; Muthukumaran C; Kirthika S; Keerthana S; Kumar NM; Jeyanthi J Int J Biol Macromol; 2020 Aug; 156():430-437. PubMed ID: 32294496 [TBL] [Abstract][Full Text] [Related]
14. Zinc and manganese substituted hydroxyapatite/CMC/PVP electrospun composite for bone repair applications. Kandasamy S; Narayanan V; Sumathi S Int J Biol Macromol; 2020 Feb; 145():1018-1030. PubMed ID: 31726129 [TBL] [Abstract][Full Text] [Related]
15. Drug delivery and tissue engineering applications of biocompatible pectin-chitin/nano CaCO3 composite scaffolds. Kumar PT; Ramya C; Jayakumar R; Nair Sk; Lakshmanan VK Colloids Surf B Biointerfaces; 2013 Jun; 106():109-16. PubMed ID: 23434699 [TBL] [Abstract][Full Text] [Related]
16. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment. Zhang K; Fu Q; Yoo J; Chen X; Chandra P; Mo X; Song L; Atala A; Zhao W Acta Biomater; 2017 Mar; 50():154-164. PubMed ID: 27940192 [TBL] [Abstract][Full Text] [Related]
17. In vitro biocompatibility study of keratin/agar scaffold for tissue engineering. Nayak KK; Gupta P Int J Biol Macromol; 2015 Nov; 81():1-10. PubMed ID: 26188296 [TBL] [Abstract][Full Text] [Related]
18. Synergistic intrafibrillar/extrafibrillar mineralization of collagen scaffolds based on a biomimetic strategy to promote the regeneration of bone defects. Wang Y; Van Manh N; Wang H; Zhong X; Zhang X; Li C Int J Nanomedicine; 2016; 11():2053-67. PubMed ID: 27274235 [TBL] [Abstract][Full Text] [Related]
19. Construction of Injectable Self-Healing Macroporous Hydrogels via a Template-Free Method for Tissue Engineering and Drug Delivery. Wang L; Deng F; Wang W; Li A; Lu C; Chen H; Wu G; Nan K; Li L ACS Appl Mater Interfaces; 2018 Oct; 10(43):36721-36732. PubMed ID: 30261143 [TBL] [Abstract][Full Text] [Related]
20. Biocompatible and mechanically robust nanocomposite hydrogels for potential applications in tissue engineering. Kouser R; Vashist A; Zafaryab M; Rizvi MA; Ahmad S Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():168-179. PubMed ID: 29519426 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]