BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 30573530)

  • 1. The
    Li S; Xue G; Zhao H; Feng Y; Yan C; Cui J; Sun H
    Biosci Rep; 2019 Jan; 39(1):. PubMed ID: 30573530
    [No Abstract]   [Full Text] [Related]  

  • 2. Hydrogen sulfide is a novel potential virulence factor of Mycoplasma pneumoniae: characterization of the unusual cysteine desulfurase/desulfhydrase HapE.
    Großhennig S; Ischebeck T; Gibhardt J; Busse J; Feussner I; Stülke J
    Mol Microbiol; 2016 Apr; 100(1):42-54. PubMed ID: 26711628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling persistent
    Feng M; Burgess AC; Cuellar RR; Schwab NR; Balish MF
    J Med Microbiol; 2021 Jan; 70(1):. PubMed ID: 33170120
    [No Abstract]   [Full Text] [Related]  

  • 4. Network of Surface-Displayed Glycolytic Enzymes in Mycoplasma pneumoniae and Their Interactions with Human Plasminogen.
    Gründel A; Pfeiffer M; Jacobs E; Dumke R
    Infect Immun; 2015 Dec; 84(3):666-76. PubMed ID: 26667841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathogenesis of Mycoplasma pneumoniae: An update.
    Chaudhry R; Ghosh A; Chandolia A
    Indian J Med Microbiol; 2016; 34(1):7-16. PubMed ID: 26776112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling persistent Mycoplasma pneumoniae infection of human airway epithelium.
    Prince OA; Krunkosky TM; Sheppard ES; Krause DC
    Cell Microbiol; 2018 Mar; 20(3):. PubMed ID: 29155483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mycoplasma pneumoniae Community Acquired Respiratory Distress Syndrome toxin expression reveals growth phase and infection-dependent regulation.
    Kannan TR; Musatovova O; Balasubramanian S; Cagle M; Jordan JL; Krunkosky TM; Davis A; Hardy RD; Baseman JB
    Mol Microbiol; 2010 Jun; 76(5):1127-41. PubMed ID: 20199607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ADP-ribosylating and vacuolating cytotoxin of Mycoplasma pneumoniae represents unique virulence determinant among bacterial pathogens.
    Kannan TR; Baseman JB
    Proc Natl Acad Sci U S A; 2006 Apr; 103(17):6724-9. PubMed ID: 16617115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mycoplasma pneumoniae host-pathogen studies in an air-liquid culture of differentiated human airway epithelial cells.
    Krunkosky TM; Jordan JL; Chambers E; Krause DC
    Microb Pathog; 2007; 42(2-3):98-103. PubMed ID: 17261358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of Infantile Feire Kechuan Oral Solution against Mycoplasma pneumoniae infection of A549 cells.
    Wan R; Jia M; Dou H; Tu P; Shi D; Yuan Q; Xin D
    Biomed Pharmacother; 2022 Jan; 145():112366. PubMed ID: 34776306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The genetic view of Mycoplasma infections].
    Kenri T
    Nihon Rinsho; 2003 Mar; 61 Suppl 3():772-8. PubMed ID: 12718063
    [No Abstract]   [Full Text] [Related]  

  • 12. Characterization of pyruvate dehydrogenase subunit B and enolase as plasminogen-binding proteins in Mycoplasma pneumoniae.
    Thomas C; Jacobs E; Dumke R
    Microbiology (Reading); 2013 Feb; 159(Pt 2):352-365. PubMed ID: 23197176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Downregulation of caspase‑3 alleviates Mycoplasma pneumoniae‑induced apoptosis in alveolar epithelial cells.
    Shi S; Liu X; Li H
    Mol Med Rep; 2017 Dec; 16(6):9601-9606. PubMed ID: 29039549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long non‑coding RNA GAS5 protects against
    Yang L; Zhang X; Liu X
    Mol Med Rep; 2021 May; 23(5):. PubMed ID: 33760178
    [No Abstract]   [Full Text] [Related]  

  • 15. In silico approaches for the identification of virulence candidates amongst hypothetical proteins of Mycoplasma pneumoniae 309.
    Shahbaaz M; Bisetty K; Ahmad F; Hassan MI
    Comput Biol Chem; 2015 Dec; 59 Pt A():67-80. PubMed ID: 26414949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Internalization and intracellular survival of Mycoplasma pneumoniae by non-phagocytic cells.
    Yavlovich A; Tarshis M; Rottem S
    FEMS Microbiol Lett; 2004 Apr; 233(2):241-6. PubMed ID: 15063492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The surface-displayed chaperones GroEL and DnaK of Mycoplasma pneumoniae interact with human plasminogen and components of the extracellular matrix.
    Hagemann L; Gründel A; Jacobs E; Dumke R
    Pathog Dis; 2017 Apr; 75(3):. PubMed ID: 28204467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of Mycoplasma pneumoniae glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in mediating interactions with the human extracellular matrix.
    Dumke R; Hausner M; Jacobs E
    Microbiology (Reading); 2011 Aug; 157(Pt 8):2328-2338. PubMed ID: 21546586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of protective anti-Mycoplasma pneumoniae antibodies after immunization of guinea pigs with the combination of a P1-P30 chimeric recombinant protein and chitosan.
    Hausner M; Schamberger A; Naumann W; Jacobs E; Dumke R
    Microb Pathog; 2013 Nov; 64():23-32. PubMed ID: 23948467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of regulated upon activation, normal T cells expressed and secreted (RANTES) and transforming growth factor-beta 1 in airway epithelial cells by Mycoplasma pneumoniae.
    Dakhama A; Kraft M; Martin RJ; Gelfand EW
    Am J Respir Cell Mol Biol; 2003 Sep; 29(3 Pt 1):344-51. PubMed ID: 12714377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.