These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 30573624)

  • 1. Single-component quasicrystalline nanocrystal superlattices through flexible polygon tiling rule.
    Nagaoka Y; Zhu H; Eggert D; Chen O
    Science; 2018 Dec; 362(6421):1396-1400. PubMed ID: 30573624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superstructures generated from truncated tetrahedral quantum dots.
    Nagaoka Y; Tan R; Li R; Zhu H; Eggert D; Wu YA; Liu Y; Wang Z; Chen O
    Nature; 2018 Sep; 561(7723):378-382. PubMed ID: 30232427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembly of tetrahedral CdSe nanocrystals: effective "patchiness" via anisotropic steric interaction.
    Boles MA; Talapin DV
    J Am Chem Soc; 2014 Apr; 136(16):5868-71. PubMed ID: 24655011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Transformation of High-Architectural Nanocrystal Superlattices upon Solvent Molecule Exposure.
    Nagaoka Y; Schneider J; Jin N; Cai T; Liu Y; Wang Z; Li R; Kim KS; Chen O
    J Am Chem Soc; 2024 May; 146(19):13093-13104. PubMed ID: 38690763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of ordering in single-component and binary nanocrystal superlattices by analysis of their autocorrelation functions.
    Pichler S; Bodnarchuk MI; Kovalenko MV; Yarema M; Springholz G; Talapin DV; Heiss W
    ACS Nano; 2011 Mar; 5(3):1703-12. PubMed ID: 21370900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning the Colloidal Softness of CsPbBr
    Levy S; Be'er O; Veber N; Monachon C; Bekenstein Y
    Nano Lett; 2023 Aug; 23(15):7129-7134. PubMed ID: 37470186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quasicrystalline order in self-assembled binary nanoparticle superlattices.
    Talapin DV; Shevchenko EV; Bodnarchuk MI; Ye X; Chen J; Murray CB
    Nature; 2009 Oct; 461(7266):964-7. PubMed ID: 19829378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shape-directed binary assembly of anisotropic nanoplates: a nanocrystal puzzle with shape-complementary building blocks.
    Paik T; Murray CB
    Nano Lett; 2013 Jun; 13(6):2952-6. PubMed ID: 23668826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binary and ternary superlattices self-assembled from colloidal nanodisks and nanorods.
    Paik T; Diroll BT; Kagan CR; Murray CB
    J Am Chem Soc; 2015 May; 137(20):6662-9. PubMed ID: 25927895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quasicrystalline nanocrystal superlattice with partial matching rules.
    Ye X; Chen J; Eric Irrgang M; Engel M; Dong A; Glotzer SC; Murray CB
    Nat Mater; 2017 Feb; 16(2):214-219. PubMed ID: 27669053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Largest Quasicrystalline Tiling with Dodecagonal Symmetry from a Single Pentablock Quarterpolymer of the AB
    Suzuki M; Orido T; Takano A; Matsushita Y
    ACS Nano; 2022 Apr; 16(4):6111-6117. PubMed ID: 35315642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled Self-Assembly of Gold Nanotetrahedra into Quasicrystals and Complex Periodic Supracrystals.
    Wang Y; Chen J; Li R; Götz A; Drobek D; Przybilla T; Hübner S; Pelz P; Yang L; Apeleo Zubiri B; Spiecker E; Engel M; Ye X
    J Am Chem Soc; 2023 Aug; 145(32):17902-17911. PubMed ID: 37534987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pseudomorphic amorphization of three-dimensional superlattices through morphological transformation of nanocrystal building blocks.
    Saruyama M; Takahata R; Sato R; Matsumoto K; Zhu L; Nakanishi Y; Shibata M; Nakatani T; Fujinami S; Miyazaki T; Takenaka M; Teranishi T
    Chem Sci; 2024 Feb; 15(7):2425-2432. PubMed ID: 38362422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly of PbTe quantum dots into nanocrystal superlattices and glassy films.
    Urban JJ; Talapin DV; Shevchenko EV; Murray CB
    J Am Chem Soc; 2006 Mar; 128(10):3248-55. PubMed ID: 16522106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of orientation-ordered superlattices of magnetite magnetic nanocrystals from shape-segregated self-assemblies.
    Song Q; Ding Y; Wang ZL; Zhang ZJ
    J Phys Chem B; 2006 Dec; 110(50):25547-50. PubMed ID: 17166006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling Nanoparticle Orientations in the Self-Assembly of Patchy Quantum Dot-Gold Heterostructural Nanocrystals.
    Zhu H; Fan Z; Yu L; Wilson MA; Nagaoka Y; Eggert D; Cao C; Liu Y; Wei Z; Wang X; He J; Zhao J; Li R; Wang Z; Grünwald M; Chen O
    J Am Chem Soc; 2019 Apr; 141(14):6013-6021. PubMed ID: 30889948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies of liquid crystalline self-assembly of GdF₃ nanoplates by in-plane, out-of-plane SAXS.
    Paik T; Ko DK; Gordon TR; Doan-Nguyen V; Murray CB
    ACS Nano; 2011 Oct; 5(10):8322-30. PubMed ID: 21905726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial control of functional properties via octahedral modulations in complex oxide superlattices.
    Moon EJ; Colby R; Wang Q; Karapetrova E; Schlepütz CM; Fitzsimmons MR; May SJ
    Nat Commun; 2014 Dec; 5():5710. PubMed ID: 25501927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials.
    Boles MA; Engel M; Talapin DV
    Chem Rev; 2016 Sep; 116(18):11220-89. PubMed ID: 27552640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diamond family of nanoparticle superlattices.
    Liu W; Tagawa M; Xin HL; Wang T; Emamy H; Li H; Yager KG; Starr FW; Tkachenko AV; Gang O
    Science; 2016 Feb; 351(6273):582-6. PubMed ID: 26912698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.