BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 30573728)

  • 1. Regulation of mycobacterial infection by macrophage Gch1 and tetrahydrobiopterin.
    McNeill E; Stylianou E; Crabtree MJ; Harrington-Kandt R; Kolb AL; Diotallevi M; Hale AB; Bettencourt P; Tanner R; O'Shea MK; Matsumiya M; Lockstone H; Müller J; Fletcher HA; Greaves DR; McShane H; Channon KM
    Nat Commun; 2018 Dec; 9(1):5409. PubMed ID: 30573728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of iNOS function and cellular redox state by macrophage Gch1 reveals specific requirements for tetrahydrobiopterin in NRF2 activation.
    McNeill E; Crabtree MJ; Sahgal N; Patel J; Chuaiphichai S; Iqbal AJ; Hale AB; Greaves DR; Channon KM
    Free Radic Biol Med; 2015 Feb; 79():206-16. PubMed ID: 25451639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endothelial cell-specific roles for tetrahydrobiopterin in myocardial function, cardiac hypertrophy, and response to myocardial ischemia-reperfusion injury.
    Chuaiphichai S; Chu SM; Carnicer R; Kelly M; Bendall JK; Simon JN; Douglas G; Crabtree MJ; Casadei B; Channon KM
    Am J Physiol Heart Circ Physiol; 2023 Apr; 324(4):H430-H442. PubMed ID: 36735402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of β-adrenergic control of heart rate by GTP-cyclohydrolase 1 (GCH1) and tetrahydrobiopterin.
    Adlam D; Herring N; Douglas G; De Bono JP; Li D; Danson EJ; Tatham A; Lu CJ; Jennings KA; Cragg SJ; Casadei B; Paterson DJ; Channon KM
    Cardiovasc Res; 2012 Mar; 93(4):694-701. PubMed ID: 22241166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell-autonomous role of endothelial GTP cyclohydrolase 1 and tetrahydrobiopterin in blood pressure regulation.
    Chuaiphichai S; McNeill E; Douglas G; Crabtree MJ; Bendall JK; Hale AB; Alp NJ; Channon KM
    Hypertension; 2014 Sep; 64(3):530-40. PubMed ID: 24777984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A key role for tetrahydrobiopterin-dependent endothelial NOS regulation in resistance arteries: studies in endothelial cell tetrahydrobiopterin-deficient mice.
    Chuaiphichai S; Crabtree MJ; Mcneill E; Hale AB; Trelfa L; Channon KM; Douglas G
    Br J Pharmacol; 2017 Apr; 174(8):657-671. PubMed ID: 28128438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric Oxide Modulates Metabolic Remodeling in Inflammatory Macrophages through TCA Cycle Regulation and Itaconate Accumulation.
    Bailey JD; Diotallevi M; Nicol T; McNeill E; Shaw A; Chuaiphichai S; Hale A; Starr A; Nandi M; Stylianou E; McShane H; Davis S; Fischer R; Kessler BM; McCullagh J; Channon KM; Crabtree MJ
    Cell Rep; 2019 Jul; 28(1):218-230.e7. PubMed ID: 31269442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles for endothelial cell and macrophage Gch1 and tetrahydrobiopterin in atherosclerosis progression.
    Douglas G; Hale AB; Patel J; Chuaiphichai S; Al Haj Zen A; Rashbrook VS; Trelfa L; Crabtree MJ; McNeill E; Channon KM
    Cardiovasc Res; 2018 Aug; 114(10):1385-1399. PubMed ID: 29596571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mast cell tetrahydrobiopterin contributes to itch in mice.
    Zschiebsch K; Fischer C; Wilken-Schmitz A; Geisslinger G; Channon K; Watschinger K; Tegeder I
    J Cell Mol Med; 2019 Feb; 23(2):985-1000. PubMed ID: 30450838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endothelial cell tetrahydrobiopterin deficiency attenuates LPS-induced vascular dysfunction and hypotension.
    Chuaiphichai S; Starr A; Nandi M; Channon KM; McNeill E
    Vascul Pharmacol; 2016 Feb; 77():69-79. PubMed ID: 26276526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endothelial cell vasodilator dysfunction mediates progressive pregnancy-induced hypertension in endothelial cell tetrahydrobiopterin deficient mice.
    Chuaiphichai S; Dickinson Y; Whiteman CAR; Au-Yeung D; McNeill E; Channon KM; Douglas G
    Vascul Pharmacol; 2023 Jun; 150():107168. PubMed ID: 36966985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validating the GTP-cyclohydrolase 1-feedback regulatory complex as a therapeutic target using biophysical and in vivo approaches.
    Hussein D; Starr A; Heikal L; McNeill E; Channon KM; Brown PR; Sutton BJ; McDonnell JM; Nandi M
    Br J Pharmacol; 2015 Aug; 172(16):4146-57. PubMed ID: 26014146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endothelial GTPCH (GTP Cyclohydrolase 1) and Tetrahydrobiopterin Regulate Gestational Blood Pressure, Uteroplacental Remodeling, and Fetal Growth.
    Chuaiphichai S; Yu GZ; Tan CMJ; Whiteman C; Douglas G; Dickinson Y; Drydale EN; Appari M; Zhang W; Crabtree MJ; McNeill E; Hale AB; Lewandowski AJ; Alp NJ; Vatish M; Leeson P; Channon KM
    Hypertension; 2021 Dec; 78(6):1871-1884. PubMed ID: 34689592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms underlying the efficacy and limitation of dopa and tetrahydrobiopterin therapies for the deficiency of GTP cyclohydrolase 1 revealed in a novel mouse model.
    Jiang X; Shao Y; Liao Y; Zheng X; Peng M; Cai Y; Wang M; Liu H; Zeng C; Lin Y; Zhang W; Liu L
    Eur J Pharmacol; 2024 Mar; 967():176379. PubMed ID: 38342361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A requirement for Gch1 and tetrahydrobiopterin in embryonic development.
    Douglas G; Hale AB; Crabtree MJ; Ryan BJ; Hansler A; Watschinger K; Gross SS; Lygate CA; Alp NJ; Channon KM
    Dev Biol; 2015 Mar; 399(1):129-138. PubMed ID: 25557619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphoinositide 3-kinase in nitric oxide synthesis in macrophage: critical dimerization of inducible nitric-oxide synthase.
    Sakai K; Suzuki H; Oda H; Akaike T; Azuma Y; Murakami T; Sugi K; Ito T; Ichinose H; Koyasu S; Shirai M
    J Biol Chem; 2006 Jun; 281(26):17736-42. PubMed ID: 16636057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of GTP cyclohydrolase attenuates tumor growth by reducing angiogenesis and M2-like polarization of tumor associated macrophages.
    Pickert G; Lim HY; Weigert A; Häussler A; Myrczek T; Waldner M; Labocha S; Ferreirós N; Geisslinger G; Lötsch J; Becker C; Brüne B; Tegeder I
    Int J Cancer; 2013 Feb; 132(3):591-604. PubMed ID: 22753274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stoichiometric relationships between endothelial tetrahydrobiopterin, endothelial NO synthase (eNOS) activity, and eNOS coupling in vivo: insights from transgenic mice with endothelial-targeted GTP cyclohydrolase 1 and eNOS overexpression.
    Bendall JK; Alp NJ; Warrick N; Cai S; Adlam D; Rockett K; Yokoyama M; Kawashima S; Channon KM
    Circ Res; 2005 Oct; 97(9):864-71. PubMed ID: 16179591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tetrahydrobiopterin-dependent preservation of nitric oxide-mediated endothelial function in diabetes by targeted transgenic GTP-cyclohydrolase I overexpression.
    Alp NJ; Mussa S; Khoo J; Cai S; Guzik T; Jefferson A; Goh N; Rockett KA; Channon KM
    J Clin Invest; 2003 Sep; 112(5):725-35. PubMed ID: 12952921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. microRNA-146a promotes mycobacterial survival in macrophages through suppressing nitric oxide production.
    Li M; Wang J; Fang Y; Gong S; Li M; Wu M; Lai X; Zeng G; Wang Y; Yang K; Huang X
    Sci Rep; 2016 Mar; 6():23351. PubMed ID: 27025258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.