These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 30574025)

  • 21. A methodology to assess the intrinsic discriminative ability of a distance function and its interplay with clustering algorithms for microarray data analysis.
    Giancarlo R; Lo Bosco G; Pinello L; Utro F
    BMC Bioinformatics; 2013; 14 Suppl 1(Suppl 1):S6. PubMed ID: 23369037
    [TBL] [Abstract][Full Text] [Related]  

  • 22. More robust detection of motifs in coexpressed genes by using phylogenetic information.
    Monsieurs P; Thijs G; Fadda AA; De Keersmaecker SC; Vanderleyden J; De Moor B; Marchal K
    BMC Bioinformatics; 2006 Mar; 7():160. PubMed ID: 16549017
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MoTeX-II: structured MoTif eXtraction from large-scale datasets.
    Pissis SP
    BMC Bioinformatics; 2014 Jul; 15():235. PubMed ID: 25004797
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Classification and assessment tools for structural motif discovery algorithms.
    Badr G; Al-Turaiki I; Mathkour H
    BMC Bioinformatics; 2013; 14 Suppl 9(Suppl 9):S4. PubMed ID: 23902564
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A discriminative approach for unsupervised clustering of DNA sequence motifs.
    Stegmaier P; Kel A; Wingender E; Borlak J
    PLoS Comput Biol; 2013; 9(3):e1002958. PubMed ID: 23555204
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pr[m]: An Algorithm for Protein Motif Discovery.
    Semwal R; Aier I; Raj U; Varadwaj PK
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):585-592. PubMed ID: 32750855
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Monte Carlo-based framework enhances the discovery and interpretation of regulatory sequence motifs.
    Seitzer P; Wilbanks EG; Larsen DJ; Facciotti MT
    BMC Bioinformatics; 2012 Nov; 13():317. PubMed ID: 23181585
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Discovering gapped binding sites of yeast transcription factors.
    Chen CY; Tsai HK; Hsu CM; May Chen MJ; Hung HG; Huang GT; Li WH
    Proc Natl Acad Sci U S A; 2008 Feb; 105(7):2527-32. PubMed ID: 18272477
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ADEPT: a domain independent sequence alignment strategy for gpu architectures.
    Awan MG; Deslippe J; Buluc A; Selvitopi O; Hofmeyr S; Oliker L; Yelick K
    BMC Bioinformatics; 2020 Sep; 21(1):406. PubMed ID: 32933482
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unsupervised statistical discovery of spaced motifs in prokaryotic genomes.
    Tong H; Schliekelman P; Mrázek J
    BMC Genomics; 2017 Jan; 18(1):27. PubMed ID: 28056763
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Finding motifs using random projections.
    Buhler J; Tompa M
    J Comput Biol; 2002; 9(2):225-42. PubMed ID: 12015879
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Meta-analysis discovery of tissue-specific DNA sequence motifs from mammalian gene expression data.
    Huber BR; Bulyk ML
    BMC Bioinformatics; 2006 Apr; 7():229. PubMed ID: 16643658
    [TBL] [Abstract][Full Text] [Related]  

  • 33. HeliCis: a DNA motif discovery tool for colocalized motif pairs with periodic spacing.
    Larsson E; Lindahl P; Mostad P
    BMC Bioinformatics; 2007 Oct; 8():418. PubMed ID: 17963524
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A fast weak motif-finding algorithm based on community detection in graphs.
    Jia C; Carson MB; Yu J
    BMC Bioinformatics; 2013 Jul; 14():227. PubMed ID: 23865838
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new DNA sequence entropy-based Kullback-Leibler algorithm for gene clustering.
    Dehghanzadeh H; Ghaderi-Zefrehei M; Mirhoseini SZ; Esmaeilkhaniyan S; Haruna IL; Amirpour Najafabadi H
    J Appl Genet; 2020 May; 61(2):231-238. PubMed ID: 31981184
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improved K-means clustering algorithm for exploring local protein sequence motifs representing common structural property.
    Zhong W; Altun G; Harrison R; Tai PC; Pan Y
    IEEE Trans Nanobioscience; 2005 Sep; 4(3):255-65. PubMed ID: 16220690
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Discovery of protein phosphorylation motifs through exploratory data analysis.
    Chen YC; Aguan K; Yang CW; Wang YT; Pal NR; Chung IF
    PLoS One; 2011; 6(5):e20025. PubMed ID: 21647451
    [TBL] [Abstract][Full Text] [Related]  

  • 38. RSAT 2015: Regulatory Sequence Analysis Tools.
    Medina-Rivera A; Defrance M; Sand O; Herrmann C; Castro-Mondragon JA; Delerce J; Jaeger S; Blanchet C; Vincens P; Caron C; Staines DM; Contreras-Moreira B; Artufel M; Charbonnier-Khamvongsa L; Hernandez C; Thieffry D; Thomas-Chollier M; van Helden J
    Nucleic Acids Res; 2015 Jul; 43(W1):W50-6. PubMed ID: 25904632
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metamotifs--a generative model for building families of nucleotide position weight matrices.
    Piipari M; Down TA; Hubbard TJ
    BMC Bioinformatics; 2010 Jun; 11():348. PubMed ID: 20579334
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SARNAclust: Semi-automatic detection of RNA protein binding motifs from immunoprecipitation data.
    Dotu I; Adamson SI; Coleman B; Fournier C; Ricart-Altimiras E; Eyras E; Chuang JH
    PLoS Comput Biol; 2018 Mar; 14(3):e1006078. PubMed ID: 29596423
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.