These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 30575023)

  • 21. Application of a GIS-/remote sensing-based approach for predicting groundwater potential zones using a multi-criteria data mining methodology.
    Mogaji KA; Lim HS
    Environ Monit Assess; 2017 Jul; 189(7):321. PubMed ID: 28593561
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Understanding the Groundwater Hydrology of a Geographically-Isolated Prairie Fen: Implications for Conservation.
    Sampath PV; Liao HS; Curtis ZK; Doran PJ; Herbert ME; May CA; Li SG
    PLoS One; 2015; 10(10):e0140430. PubMed ID: 26452279
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of groundwater quality on sustainability of groundwater resource: A case study in the North China Plain.
    Wu M; Wu J; Liu J; Wu J; Zheng C
    J Contam Hydrol; 2015 Aug; 179():132-47. PubMed ID: 26102477
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Groundwater Development Stress: Global-Scale Indices Compared to Regional Modeling.
    Alley WM; Clark BR; Ely DM; Faunt CC
    Ground Water; 2018 Mar; 56(2):266-275. PubMed ID: 28810076
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimating the spatial distribution of artificial groundwater recharge using multiple tracers.
    Moeck C; Radny D; Auckenthaler A; Berg M; Hollender J; Schirmer M
    Isotopes Environ Health Stud; 2017 Oct; 53(5):484-499. PubMed ID: 28589773
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Hydrologic processes of the different landscape zones in Fenhe River headwater catchment].
    Yang YG; Li CM; Qin ZD; Zou SB
    Huan Jing Ke Xue; 2014 Jun; 35(6):2108-13. PubMed ID: 25158484
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Groundwater remediation: the next 30 years.
    Hadley PW; Newell CJ
    Ground Water; 2012; 50(5):669-78. PubMed ID: 22612359
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simulating the hydrologic cycle in coal mining subsidence areas with a distributed hydrologic model.
    Wang J; Lu C; Sun Q; Xiao W; Cao G; Li H; Yan L; Zhang B
    Sci Rep; 2017 Jan; 7():39983. PubMed ID: 28106048
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Subsurface biogeochemistry is a missing link between ecology and hydrology in dam-impacted river corridors.
    Graham EB; Stegen JC; Huang M; Chen X; Scheibe TD
    Sci Total Environ; 2019 Mar; 657():435-445. PubMed ID: 30550907
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Validation of a model with climatic and flow scenario analysis: case of Lake Burrumbeet in southeastern Australia.
    Yihdego Y; Webb J
    Environ Monit Assess; 2016 May; 188(5):308. PubMed ID: 27108121
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Groundwater intensive use and mining in south-eastern peninsular Spain: Hydrogeological, economic and social aspects.
    Custodio E; Andreu-Rodes JM; Aragón R; Estrela T; Ferrer J; García-Aróstegui JL; Manzano M; Rodríguez-Hernández L; Sahuquillo A; Del Villar A
    Sci Total Environ; 2016 Jul; 559():302-316. PubMed ID: 27065448
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrochemical profiles in urban groundwater systems: New insights into contaminant sources and pathways in the subsurface from legacy and emerging contaminants.
    White D; Lapworth DJ; Stuart ME; Williams PJ
    Sci Total Environ; 2016 Aug; 562():962-973. PubMed ID: 27155350
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling vulnerability of groundwater to pollution under future scenarios of climate change and biofuels-related land use change: a case study in North Dakota, USA.
    Li R; Merchant JW
    Sci Total Environ; 2013 Mar; 447():32-45. PubMed ID: 23376514
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluating the impact of climate change on groundwater resources in a small Mediterranean watershed.
    Ertürk A; Ekdal A; Gürel M; Karakaya N; Guzel C; Gönenç E
    Sci Total Environ; 2014 Nov; 499():437-47. PubMed ID: 25064798
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Beyond Metrics? The Role of Hydrologic Baseline Archetypes in Environmental Water Management.
    Lane BA; Sandoval-Solis S; Stein ED; Yarnell SM; Pasternack GB; Dahlke HE
    Environ Manage; 2018 Oct; 62(4):678-693. PubMed ID: 29934651
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comprehensive review of deep learning applications in hydrology and water resources.
    Sit M; Demiray BZ; Xiang Z; Ewing GJ; Sermet Y; Demir I
    Water Sci Technol; 2020 Dec; 82(12):2635-2670. PubMed ID: 33341760
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Destruction processes of mining on water environment in the mining area combining isotopic and hydrochemical tracer.
    Yang Y; Guo T; Jiao W
    Environ Pollut; 2018 Jun; 237():356-365. PubMed ID: 29501998
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Water security, global change and land-atmosphere feedbacks.
    Dadson S; Acreman M; Harding R
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2002):20120412. PubMed ID: 24080621
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A process-based insight to the recent disappearance of streams in the central part of Tarai region, Uttarakhand, India.
    Kumar A; Shekhar S; Sarkar A; Sharma AK
    Environ Monit Assess; 2019 Jan; 191(2):66. PubMed ID: 30637525
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrologic modelling for Lake Basaka: development and application of a conceptual water budget model.
    Dinka MO; Loiskandl W; Ndambuki JM
    Environ Monit Assess; 2014 Sep; 186(9):5363-79. PubMed ID: 24816590
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.