These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 30575248)

  • 21. Directly Formed Alucone on Lithium Metal for High-Performance Li Batteries and Li-S Batteries with High Sulfur Mass Loading.
    Chen L; Huang Z; Shahbazian-Yassar R; Libera JA; Klavetter KC; Zavadil KR; Elam JW
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):7043-7051. PubMed ID: 29381865
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quasi-Solid-State Rechargeable Li-O
    Cho SM; Shim J; Cho SH; Kim J; Son BD; Lee JC; Yoon WY
    ACS Appl Mater Interfaces; 2018 May; 10(18):15634-15641. PubMed ID: 29687989
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Refining Interfaces between Electrolyte and Both Electrodes with Carbon Nanotube Paper for High-Loading Lithium-Sulfur Batteries.
    Peng Y; Wen Z; Liu C; Zeng J; Wang Y; Zhao J
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):6986-6994. PubMed ID: 30644725
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hierarchical MoS2 tubular structures internally wired by carbon nanotubes as a highly stable anode material for lithium-ion batteries.
    Chen YM; Yu XY; Li Z; Paik U; Lou XW
    Sci Adv; 2016 Jul; 2(7):e1600021. PubMed ID: 27453938
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dual Functionalities of Carbon Nanotube Films for Dendrite-Free and High Energy-High Power Lithium-Sulfur Batteries.
    Xie K; Yuan K; Zhang K; Shen C; Lv W; Liu X; Wang JG; Wei B
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4605-4613. PubMed ID: 28084721
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanomaterials for lithium-ion rechargeable batteries.
    Liu HK; Wang GX; Guo Z; Wang J; Konstantinov K
    J Nanosci Nanotechnol; 2006 Jan; 6(1):1-15. PubMed ID: 16573064
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-capacity rechargeable batteries based on deeply cyclable lithium metal anodes.
    Shi Q; Zhong Y; Wu M; Wang H; Wang H
    Proc Natl Acad Sci U S A; 2018 May; 115(22):5676-5680. PubMed ID: 29760091
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reviving Lithium-Metal Anodes for Next-Generation High-Energy Batteries.
    Guo Y; Li H; Zhai T
    Adv Mater; 2017 Aug; 29(29):. PubMed ID: 28585291
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-Stabilized and Strongly Adhesive Supramolecular Polymer Protective Layer Enables Ultrahigh-Rate and Large-Capacity Lithium-Metal Anode.
    Wang G; Chen C; Chen Y; Kang X; Yang C; Wang F; Liu Y; Xiong X
    Angew Chem Int Ed Engl; 2020 Jan; 59(5):2055-2060. PubMed ID: 31729145
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes.
    Wang W; Kumta PN
    ACS Nano; 2010 Apr; 4(4):2233-41. PubMed ID: 20364846
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Immunizing lithium metal anodes against dendrite growth using protein molecules to achieve high energy batteries.
    Wang T; Li Y; Zhang J; Yan K; Jaumaux P; Yang J; Wang C; Shanmukaraj D; Sun B; Armand M; Cui Y; Wang G
    Nat Commun; 2020 Oct; 11(1):5429. PubMed ID: 33110084
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Upcycling of Packing-Peanuts into Carbon Microsheet Anodes for Lithium-Ion Batteries.
    Etacheri V; Hong CN; Pol VG
    Environ Sci Technol; 2015 Sep; 49(18):11191-8. PubMed ID: 26098219
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrafast-Charging Silicon-Based Coral-Like Network Anodes for Lithium-Ion Batteries with High Energy and Power Densities.
    Wang B; Ryu J; Choi S; Zhang X; Pribat D; Li X; Zhi L; Park S; Ruoff RS
    ACS Nano; 2019 Feb; 13(2):2307-2315. PubMed ID: 30707012
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lithium Batteries with Nearly Maximum Metal Storage.
    Raji AO; Villegas Salvatierra R; Kim ND; Fan X; Li Y; Silva GAL; Sha J; Tour JM
    ACS Nano; 2017 Jun; 11(6):6362-6369. PubMed ID: 28511004
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication of Lithiophilic Copper Foam with Interfacial Modulation toward High-Rate Lithium Metal Anodes.
    Qin L; Xu H; Wang D; Zhu J; Chen J; Zhang W; Zhang P; Zhang Y; Tian W; Sun Z
    ACS Appl Mater Interfaces; 2018 Aug; 10(33):27764-27770. PubMed ID: 30048109
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Emerging Two-Dimensional Covalent and Coordination Polymers for Stable Lithium Metal Batteries: From Liquid to Solid.
    Wang J; Wang K; Xu Y
    ACS Nano; 2021 Dec; 15(12):19026-19053. PubMed ID: 34842431
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultrafast Charging High Capacity Asphalt-Lithium Metal Batteries.
    Wang T; Villegas Salvatierra R; Jalilov AS; Tian J; Tour JM
    ACS Nano; 2017 Nov; 11(11):10761-10767. PubMed ID: 28953348
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dendrite Suppression by Synergistic Combination of Solid Polymer Electrolyte Crosslinked with Natural Terpenes and Lithium-Powder Anode for Lithium-Metal Batteries.
    Shim J; Lee JW; Bae KY; Kim HJ; Yoon WY; Lee JC
    ChemSusChem; 2017 May; 10(10):2274-2283. PubMed ID: 28374480
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dendrite-Free Lithium Anodes with Ultra-Deep Stripping and Plating Properties Based on Vertically Oriented Lithium-Copper-Lithium Arrays.
    Cao Z; Li B; Yang S
    Adv Mater; 2019 Jul; 31(29):e1901310. PubMed ID: 31148281
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effective Infiltration of Gel Polymer Electrolyte into Silicon-Coated Vertically Aligned Carbon Nanofibers as Anodes for Solid-State Lithium-Ion Batteries.
    Pandey GP; Klankowski SA; Li Y; Sun XS; Wu J; Rojeski RA; Li J
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20909-18. PubMed ID: 26325385
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.