These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 30575401)
1. Coherent Thermoelectric Power from Graphene Quantum Dots. Zhao M; Kim D; Nguyen VL; Jiang J; Sun L; Lee YH; Yang H Nano Lett; 2019 Jan; 19(1):61-68. PubMed ID: 30575401 [TBL] [Abstract][Full Text] [Related]
2. Experimental Identification of Critical Condition for Drastically Enhancing Thermoelectric Power Factor of Two-Dimensional Layered Materials. Zeng J; He X; Liang SJ; Liu E; Sun Y; Pan C; Wang Y; Cao T; Liu X; Wang C; Zhang L; Yan S; Su G; Wang Z; Watanabe K; Taniguchi T; Singh DJ; Zhang L; Miao F Nano Lett; 2018 Dec; 18(12):7538-7545. PubMed ID: 30480455 [TBL] [Abstract][Full Text] [Related]
3. Quantum Sensing of Thermoelectric Power in Low-Dimensional Materials. Zhao M; Kim D; Lee YH; Yang H; Cho S Adv Mater; 2023 Jul; 35(27):e2106871. PubMed ID: 34889480 [TBL] [Abstract][Full Text] [Related]
4. Visualization and Control of Single-Electron Charging in Bilayer Graphene Quantum Dots. Velasco J; Lee J; Wong D; Kahn S; Tsai HZ; Costello J; Umeda T; Taniguchi T; Watanabe K; Zettl A; Wang F; Crommie MF Nano Lett; 2018 Aug; 18(8):5104-5110. PubMed ID: 30035544 [TBL] [Abstract][Full Text] [Related]
5. Graphene Quantum Dots Embedded in Bi Li S; Fan T; Liu X; Liu F; Meng H; Liu Y; Pan F ACS Appl Mater Interfaces; 2017 Feb; 9(4):3677-3685. PubMed ID: 28071045 [TBL] [Abstract][Full Text] [Related]
6. Harnessing Thermoelectric Puddles Zhao M; Kim D; Lee Y; Ling N; Zheng S; Lee YH; Yang H ACS Nano; 2021 Mar; 15(3):5397-5404. PubMed ID: 33660977 [TBL] [Abstract][Full Text] [Related]
7. Significantly Enhanced Thermoelectric Performance of Graphene through Atomic-Scale Defect Engineering via Mobile Hot-Wire Chemical Vapor Deposition Systems. Choi M; Novak TG; Byen J; Lee H; Baek J; Hong S; Kim K; Song J; Shin H; Jeon S ACS Appl Mater Interfaces; 2021 May; 13(20):24304-24313. PubMed ID: 33983698 [TBL] [Abstract][Full Text] [Related]
8. Chemical Potential Tuning and Enhancement of Thermoelectric Properties in Indium Selenides. Rhyee JS; Kim JH Materials (Basel); 2015 Mar; 8(3):1283-1324. PubMed ID: 28788002 [TBL] [Abstract][Full Text] [Related]
9. Transport through graphene quantum dots. Güttinger J; Molitor F; Stampfer C; Schnez S; Jacobsen A; Dröscher S; Ihn T; Ensslin K Rep Prog Phys; 2012 Dec; 75(12):126502. PubMed ID: 23144122 [TBL] [Abstract][Full Text] [Related]
10. Thermoelectric properties of a weakly coupled quantum dot: enhanced thermoelectric efficiency. Tsaousidou M; Triberis GP J Phys Condens Matter; 2010 Sep; 22(35):355304. PubMed ID: 21403283 [TBL] [Abstract][Full Text] [Related]
11. Optimizing the thermoelectric performance of graphene nano-ribbons without degrading the electronic properties. Tran VT; Saint-Martin J; Dollfus P; Volz S Sci Rep; 2017 May; 7(1):2313. PubMed ID: 28539598 [TBL] [Abstract][Full Text] [Related]
12. Thermal and thermoelectric properties of graphene. Xu Y; Li Z; Duan W Small; 2014 Jun; 10(11):2182-99. PubMed ID: 24610791 [TBL] [Abstract][Full Text] [Related]
13. Staircase Quantum Dots Configuration in Nanowires for Optimized Thermoelectric Power. Li L; Jiang JH Sci Rep; 2016 Aug; 6():31974. PubMed ID: 27550093 [TBL] [Abstract][Full Text] [Related]
14. The transfer matrix approach to circular graphene quantum dots. Nguyen HC; Nguyen NT; Nguyen VL J Phys Condens Matter; 2016 Jul; 28(27):275301. PubMed ID: 27214382 [TBL] [Abstract][Full Text] [Related]
15. Hot electron injection from graphene quantum dots to TiO₂. Williams KJ; Nelson CA; Yan X; Li LS; Zhu X ACS Nano; 2013 Feb; 7(2):1388-94. PubMed ID: 23347000 [TBL] [Abstract][Full Text] [Related]
16. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes. Gabor NM Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453 [TBL] [Abstract][Full Text] [Related]
17. PEDOT:PSS/graphene quantum dots films with enhanced thermoelectric properties via strong interfacial interaction and phase separation. Du FP; Cao NN; Zhang YF; Fu P; Wu YG; Lin ZD; Shi R; Amini A; Cheng C Sci Rep; 2018 Apr; 8(1):6441. PubMed ID: 29691433 [TBL] [Abstract][Full Text] [Related]
18. Quantum Effects in the Thermoelectric Power Factor of Low-Dimensional Semiconductors. Hung NT; Hasdeo EH; Nugraha AR; Dresselhaus MS; Saito R Phys Rev Lett; 2016 Jul; 117(3):036602. PubMed ID: 27472126 [TBL] [Abstract][Full Text] [Related]
19. Enhancement of the thermoelectric properties in bilayer graphene structures induced by Fano resonances. Briones-Torres JA; Pérez-Álvarez R; Molina-Valdovinos S; Rodríguez-Vargas I Sci Rep; 2021 Jul; 11(1):13872. PubMed ID: 34230518 [TBL] [Abstract][Full Text] [Related]
20. Enhanced Thermoelectric Properties of Bilayer-Like Structural Graphene Quantum Dots/Single-Walled Carbon Nanotubes Hybrids. Yao JA; Peng XX; Liu ZK; Zhang YF; Fu P; Li H; Lin ZD; Du FP ACS Appl Mater Interfaces; 2020 Sep; 12(35):39145-39153. PubMed ID: 32805894 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]