These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
313 related articles for article (PubMed ID: 30575437)
1. Novel role of the ER/SR Ca Collins HE; Pat BM; Zou L; Litovsky SH; Wende AR; Young ME; Chatham JC Am J Physiol Heart Circ Physiol; 2019 May; 316(5):H1014-H1026. PubMed ID: 30575437 [TBL] [Abstract][Full Text] [Related]
2. Stromal interaction molecule 1 is essential for normal cardiac homeostasis through modulation of ER and mitochondrial function. Collins HE; He L; Zou L; Qu J; Zhou L; Litovsky SH; Yang Q; Young ME; Marchase RB; Chatham JC Am J Physiol Heart Circ Physiol; 2014 Apr; 306(8):H1231-9. PubMed ID: 24585777 [TBL] [Abstract][Full Text] [Related]
3. Cardiomyocyte stromal interaction molecule 1 is a key regulator of Ca Collins HE; Anderson JC; Wende AR; Chatham JC Physiol Rep; 2022 Feb; 10(4):e15177. PubMed ID: 35179826 [TBL] [Abstract][Full Text] [Related]
5. Cardiomyocyte-Specific STIM1 (Stromal Interaction Molecule 1) Depletion in the Adult Heart Promotes the Development of Arrhythmogenic Discordant Alternans. Cacheux M; Strauss B; Raad N; Ilkan Z; Hu J; Benard L; Feske S; Hulot JS; Akar FG Circ Arrhythm Electrophysiol; 2019 Nov; 12(11):e007382. PubMed ID: 31726860 [TBL] [Abstract][Full Text] [Related]
6. Hearts lacking plasma membrane K Youssef N; Campbell S; Barr A; Gandhi M; Hunter B; Dolinsky V; Dyck JRB; Clanachan AS; Light PE Am J Physiol Heart Circ Physiol; 2017 Sep; 313(3):H469-H478. PubMed ID: 28667052 [TBL] [Abstract][Full Text] [Related]
7. Role of STIM1 in the Regulation of Cardiac Energy Substrate Preference. Liu P; Yang Z; Wang Y; Sun A Int J Mol Sci; 2023 Aug; 24(17):. PubMed ID: 37685995 [TBL] [Abstract][Full Text] [Related]
8. Regulating cardiac energy metabolism and bioenergetics by targeting the DNA damage repair protein BRCA1. Singh KK; Shukla PC; Yanagawa B; Quan A; Lovren F; Pan Y; Wagg CS; Teoh H; Lopaschuk GD; Verma S J Thorac Cardiovasc Surg; 2013 Sep; 146(3):702-9. PubMed ID: 23317938 [TBL] [Abstract][Full Text] [Related]
9. Cardiomyocyte-specific deletion of Sirt1 gene sensitizes myocardium to ischaemia and reperfusion injury. Wang L; Quan N; Sun W; Chen X; Cates C; Rousselle T; Zhou X; Zhao X; Li J Cardiovasc Res; 2018 May; 114(6):805-821. PubMed ID: 29409011 [TBL] [Abstract][Full Text] [Related]
10. Loss of lipoprotein lipase-derived fatty acids leads to increased cardiac glucose metabolism and heart dysfunction. Augustus AS; Buchanan J; Park TS; Hirata K; Noh HL; Sun J; Homma S; D'armiento J; Abel ED; Goldberg IJ J Biol Chem; 2006 Mar; 281(13):8716-23. PubMed ID: 16410253 [TBL] [Abstract][Full Text] [Related]
11. Metoprolol improves cardiac function and modulates cardiac metabolism in the streptozotocin-diabetic rat. Sharma V; Dhillon P; Wambolt R; Parsons H; Brownsey R; Allard MF; McNeill JH Am J Physiol Heart Circ Physiol; 2008 Apr; 294(4):H1609-20. PubMed ID: 18203848 [TBL] [Abstract][Full Text] [Related]
12. Orai1 and Stim1 regulate normal and hypertrophic growth in cardiomyocytes. Voelkers M; Salz M; Herzog N; Frank D; Dolatabadi N; Frey N; Gude N; Friedrich O; Koch WJ; Katus HA; Sussman MA; Most P J Mol Cell Cardiol; 2010 Jun; 48(6):1329-34. PubMed ID: 20138887 [TBL] [Abstract][Full Text] [Related]
13. Disruption of STIM1-mediated Ca Wilson RJ; Lyons SP; Koves TR; Bryson VG; Zhang H; Li T; Crown SB; Ding JD; Grimsrud PA; Rosenberg PB; Muoio DM Mol Metab; 2022 Mar; 57():101429. PubMed ID: 34979330 [TBL] [Abstract][Full Text] [Related]
14. Alteration of cardiac glucose metabolism in association to low birth weight: experimental evidence in lambs with left ventricular hypertrophy. Wang KC; Lim CH; McMillen IC; Duffield JA; Brooks DA; Morrison JL Metabolism; 2013 Nov; 62(11):1662-72. PubMed ID: 23928106 [TBL] [Abstract][Full Text] [Related]
15. Essential role for smooth muscle cell stromal interaction molecule-1 in myocardial infarction. Mali V; Haddox S; Belmadani S; Matrougui K J Hypertens; 2018 Feb; 36(2):377-386. PubMed ID: 29611835 [TBL] [Abstract][Full Text] [Related]
16. S-Nitrosylation of STIM1 by Neuronal Nitric Oxide Synthase Inhibits Store-Operated Ca Gui L; Zhu J; Lu X; Sims SM; Lu WY; Stathopulos PB; Feng Q J Mol Biol; 2018 Jun; 430(12):1773-1785. PubMed ID: 29705071 [TBL] [Abstract][Full Text] [Related]
17. STIM1 elevation in the heart results in aberrant Ca²⁺ handling and cardiomyopathy. Correll RN; Goonasekera SA; van Berlo JH; Burr AR; Accornero F; Zhang H; Makarewich CA; York AJ; Sargent MA; Chen X; Houser SR; Molkentin JD J Mol Cell Cardiol; 2015 Oct; 87():38-47. PubMed ID: 26241845 [TBL] [Abstract][Full Text] [Related]
18. STIM1-dependent store-operated Ca²⁺ entry is required for pathological cardiac hypertrophy. Luo X; Hojayev B; Jiang N; Wang ZV; Tandan S; Rakalin A; Rothermel BA; Gillette TG; Hill JA J Mol Cell Cardiol; 2012 Jan; 52(1):136-47. PubMed ID: 22108056 [TBL] [Abstract][Full Text] [Related]
19. Cardiac Ryanodine Receptor (Ryr2)-mediated Calcium Signals Specifically Promote Glucose Oxidation via Pyruvate Dehydrogenase. Bround MJ; Wambolt R; Cen H; Asghari P; Albu RF; Han J; McAfee D; Pourrier M; Scott NE; Bohunek L; Kulpa JE; Chen SR; Fedida D; Brownsey RW; Borchers CH; Foster LJ; Mayor T; Moore ED; Allard MF; Johnson JD J Biol Chem; 2016 Nov; 291(45):23490-23505. PubMed ID: 27621312 [TBL] [Abstract][Full Text] [Related]
20. Myocardial infarction in rats causes partial impairment in insulin response associated with reduced fatty acid oxidation and mitochondrial gene expression. Amorim PA; Nguyen TD; Shingu Y; Schwarzer M; Mohr FW; Schrepper A; Doenst T J Thorac Cardiovasc Surg; 2010 Nov; 140(5):1160-7. PubMed ID: 20850803 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]