These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 30575726)
1. Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Chen Y; Ji S; Zhao S; Chen W; Dong J; Cheong WC; Shen R; Wen X; Zheng L; Rykov AI; Cai S; Tang H; Zhuang Z; Chen C; Peng Q; Wang D; Li Y Nat Commun; 2018 Dec; 9(1):5422. PubMed ID: 30575726 [TBL] [Abstract][Full Text] [Related]
2. Simultaneously Engineering the Coordination Environment and Pore Architecture of Metal-Organic Framework-Derived Single-Atomic Iron Catalysts for Ultraefficient Oxygen Reduction. Liu F; Shi L; Song S; Ge K; Zhang X; Guo Y; Liu D Small; 2021 Oct; 17(40):e2102425. PubMed ID: 34494368 [TBL] [Abstract][Full Text] [Related]
3. Ionothermal-Transformation Strategy to Synthesize Hierarchically Tubular Porous Single-Iron-Atom Catalysts for High-Performance Zinc-Air Batteries. Li JC; Meng Y; Ma R; Hu H; Zhao S; Zhu Y; Hou PX; Liu C ACS Appl Mater Interfaces; 2021 Dec; 13(49):58576-58584. PubMed ID: 34851600 [TBL] [Abstract][Full Text] [Related]
4. Hollow Co Guan C; Sumboja A; Wu H; Ren W; Liu X; Zhang H; Liu Z; Cheng C; Pennycook SJ; Wang J Adv Mater; 2017 Nov; 29(44):. PubMed ID: 29024075 [TBL] [Abstract][Full Text] [Related]
5. Nitrogen, sulfur co-coordinated iron single-atom catalysts with the optimized electronic structure for highly efficient oxygen reduction in Zn-air battery and fuel cell. Xu H; Li R; Liu H; Sun W; Bai J; Lu X; Yang P J Colloid Interface Sci; 2024 Oct; 671():643-652. PubMed ID: 38820848 [TBL] [Abstract][Full Text] [Related]
6. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Liang HW; Zhuang X; Brüller S; Feng X; Müllen K Nat Commun; 2014 Sep; 5():4973. PubMed ID: 25229121 [TBL] [Abstract][Full Text] [Related]
7. Pomegranate-Inspired Design of Highly Active and Durable Bifunctional Electrocatalysts for Rechargeable Metal-Air Batteries. Li G; Wang X; Fu J; Li J; Park MG; Zhang Y; Lui G; Chen Z Angew Chem Int Ed Engl; 2016 Apr; 55(16):4977-82. PubMed ID: 26970076 [TBL] [Abstract][Full Text] [Related]
9. Carbon-Coated Core-Shell Fe-Cu Nanoparticles as Highly Active and Durable Electrocatalysts for a Zn-Air Battery. Nam G; Park J; Choi M; Oh P; Park S; Kim MG; Park N; Cho J; Lee JS ACS Nano; 2015 Jun; 9(6):6493-501. PubMed ID: 25967866 [TBL] [Abstract][Full Text] [Related]
10. Atomic Engineering Modulates Oxygen Reduction of Hollow Carbon Matrix Confined Single Metal-Nitrogen Sites for Zinc-Air Batteries. Wu H; Xu X; Wu J; Zhai J; Wu F; Li Y; Jiang S; Zhang J; Li H; Gao Y Small; 2023 Nov; 19(44):e2301327. PubMed ID: 37415572 [TBL] [Abstract][Full Text] [Related]
11. Updating the Intrinsic Activity of a Single-Atom Site with a P-O Bond for a Rechargeable Zn-Air Battery. Sun H; Liu S; Wang M; Qian T; Xiong J; Yan C ACS Appl Mater Interfaces; 2019 Sep; 11(36):33054-33061. PubMed ID: 31419105 [TBL] [Abstract][Full Text] [Related]
12. Ultrafine iron-cobalt nanoparticles embedded in nitrogen-doped porous carbon matrix for oxygen reduction reaction and zinc-air batteries. Zhong B; Zhang L; Yu J; Fan K J Colloid Interface Sci; 2019 Jun; 546():113-121. PubMed ID: 30904687 [TBL] [Abstract][Full Text] [Related]
13. The Kirkendall Effect for Engineering Oxygen Vacancy of Hollow Co Ji D; Fan L; Tao L; Sun Y; Li M; Yang G; Tran TQ; Ramakrishna S; Guo S Angew Chem Int Ed Engl; 2019 Sep; 58(39):13840-13844. PubMed ID: 31359586 [TBL] [Abstract][Full Text] [Related]
14. Unprecedented Activity of Bifunctional Electrocatalyst for High Power Density Aqueous Zinc-Air Batteries. Wang M; Qian T; Liu S; Zhou J; Yan C ACS Appl Mater Interfaces; 2017 Jun; 9(25):21216-21224. PubMed ID: 28581707 [TBL] [Abstract][Full Text] [Related]
15. Transition Metal and Nitrogen Co-Doped Carbon-based Electrocatalysts for the Oxygen Reduction Reaction: From Active Site Insights to the Rational Design of Precursors and Structures. Wang D; Pan X; Yang P; Li R; Xu H; Li Y; Meng F; Zhang J; An M ChemSusChem; 2021 Jan; 14(1):33-55. PubMed ID: 33078564 [TBL] [Abstract][Full Text] [Related]
17. Light-weight 3D Co-N-doped hollow carbon spheres as efficient electrocatalysts for rechargeable zinc-air batteries. Chen S; Cheng J; Ma L; Zhou S; Xu X; Zhi C; Zhang W; Zhi L; Zapien JA Nanoscale; 2018 Jun; 10(22):10412-10419. PubMed ID: 29637977 [TBL] [Abstract][Full Text] [Related]
18. Metal-Organic Framework-Derived Reduced Graphene Oxide-Supported ZnO/ZnCo Liu Y; Jiang H; Hao J; Liu Y; Shen H; Li W; Li J ACS Appl Mater Interfaces; 2017 Sep; 9(37):31841-31852. PubMed ID: 28845966 [TBL] [Abstract][Full Text] [Related]
19. High performance platinum single atom electrocatalyst for oxygen reduction reaction. Liu J; Jiao M; Lu L; Barkholtz HM; Li Y; Wang Y; Jiang L; Wu Z; Liu DJ; Zhuang L; Ma C; Zeng J; Zhang B; Su D; Song P; Xing W; Xu W; Wang Y; Jiang Z; Sun G Nat Commun; 2017 Jul; 8():15938. PubMed ID: 28737170 [TBL] [Abstract][Full Text] [Related]
20. MOF-Based Metal-Doping-Induced Synthesis of Hierarchical Porous CuN/C Oxygen Reduction Electrocatalysts for Zn-Air Batteries. Lai Q; Zhu J; Zhao Y; Liang Y; He J; Chen J Small; 2017 Aug; 13(30):. PubMed ID: 28627074 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]