These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 30575822)

  • 1. Analysis of bus drivers reaction to simulated traffic collision situations - eye-tracking studies.
    Bortkiewicz A; Gadzicka E; Siedlecka J; Kosobudzki M; Dania M; Szymczak W; Jóźwiak Z; Szyjkowska A; Viebig P; Pas-Wyroślak A; Makowiec-Dąbrowska T; Kapitaniak B; Hickman JS
    Int J Occup Med Environ Health; 2019 Apr; 32(2):161-174. PubMed ID: 30575822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A rear-end collision risk assessment model based on drivers' collision avoidance process under influences of cell phone use and gender-A driving simulator based study.
    Li X; Yan X; Wu J; Radwan E; Zhang Y
    Accid Anal Prev; 2016 Dec; 97():1-18. PubMed ID: 27565040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of effects of driver's evasive action time on rear-end collision risk using a driving simulator.
    Shah D; Lee C
    J Safety Res; 2021 Sep; 78():242-250. PubMed ID: 34399920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing drivers' visual attention at Junctions in Real and Simulated Environments.
    Robbins CJ; Allen HA; Chapman P
    Appl Ergon; 2019 Oct; 80():89-101. PubMed ID: 31280814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Driver's visual attention as a function of driving experience and visibility. Using a driving simulator to explore drivers' eye movements in day, night and rain driving.
    Konstantopoulos P; Chapman P; Crundall D
    Accid Anal Prev; 2010 May; 42(3):827-34. PubMed ID: 20380909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Truck drivers' interaction with cyclists in right-turn situations.
    Kircher K; Ahlström C
    Accid Anal Prev; 2020 Jul; 142():105515. PubMed ID: 32380238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in Drivers' Visual Performance during the Collision Avoidance Process as a Function of Different Field of Views at Intersections.
    Yan X; Zhang X; Zhang Y; Li X; Yang Z
    PLoS One; 2016; 11(10):e0164101. PubMed ID: 27716824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A parametric duration model of the reaction times of drivers distracted by mobile phone conversations.
    Haque MM; Washington S
    Accid Anal Prev; 2014 Jan; 62():42-53. PubMed ID: 24129320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How does intersection field of view influence driving safety in an emergent situation?
    Yan X; Zhang X; Xue Q
    Accid Anal Prev; 2018 Oct; 119():162-175. PubMed ID: 30036817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on driver's active emergency response in dangerous traffic scenes based on driving simulator.
    Ma S; Xu S; Song J; Wang K; Qin H; Wang R
    Traffic Inj Prev; 2024; 25(2):116-121. PubMed ID: 38019530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards an assistance strategy that reduces unnecessary collision alarms: An examination of the driver's perceived need for assistance.
    Kaß C; Schmidt GJ; Kunde W
    J Exp Psychol Appl; 2019 Jun; 25(2):291-302. PubMed ID: 30035557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Driving errors that predict simulated rear-end collisions in drivers with multiple sclerosis.
    Krasniuk S; Classen S; Morrow SA
    Traffic Inj Prev; 2021; 22(3):212-217. PubMed ID: 33688770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of car driver responses to avoid car-to-cyclist perpendicular collisions based on drive recorder data and driving simulator experiments.
    Zhao Y; Miyahara T; Mizuno K; Ito D; Han Y
    Accid Anal Prev; 2021 Feb; 150():105862. PubMed ID: 33276185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatal crash between a car operating with automated control systems and a tractor-semitrailer truck.
    Poland K; McKay MP; Bruce D; Becic E
    Traffic Inj Prev; 2018; 19(sup2):S153-S156. PubMed ID: 30841795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drivers' Visual Attention Characteristics under Different Cognitive Workloads: An On-Road Driving Behavior Study.
    Ma Y; Qi S; Zhang Y; Lian G; Lu W; Chan CY
    Int J Environ Res Public Health; 2020 Jul; 17(15):. PubMed ID: 32722496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can variations in visual behavior measures be good predictors of driver sleepiness? A real driving test study.
    Wang Y; Xin M; Bai H; Zhao Y
    Traffic Inj Prev; 2017 Feb; 18(2):132-138. PubMed ID: 27763776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Backing collisions: a study of drivers' eye and backing behaviour using combined rear-view camera and sensor systems.
    Hurwitz DS; Pradhan A; Fisher DL; Knodler MA; Muttart JW; Menon R; Meissner U
    Inj Prev; 2010 Apr; 16(2):79-84. PubMed ID: 20363812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Alabama VIP older driver study rationale and design: examining the relationship between vision impairment and driving using naturalistic driving techniques.
    Owsley C; McGwin G; Antin JF; Wood JM; Elgin J
    BMC Ophthalmol; 2018 Feb; 18(1):32. PubMed ID: 29415670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the influence of drivers' visual surroundings on speeding behavior.
    Abdel-Aty M; Ugan J; Islam Z
    Accid Anal Prev; 2024 Apr; 198():107479. PubMed ID: 38245952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Knowledge of commercial bus drivers about road safety measures in Lagos, Nigeria.
    Okafor Ifeoma P; Odeyemi Kofoworola A; Dolapo Duro C
    Ann Afr Med; 2013; 12(1):34-9. PubMed ID: 23480993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.