These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Rheology of cohesive granular materials across multiple dense-flow regimes. Gu Y; Chialvo S; Sundaresan S Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032206. PubMed ID: 25314436 [TBL] [Abstract][Full Text] [Related]
6. Effects of cohesion on the flow patterns of granular materials in spouted beds. Zhu R; Li S; Yao Q Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022206. PubMed ID: 23496504 [TBL] [Abstract][Full Text] [Related]
7. Cohesive self-organization of mobile microrobotic swarms. Yigit B; Alapan Y; Sitti M Soft Matter; 2020 Feb; 16(8):1996-2004. PubMed ID: 32003392 [TBL] [Abstract][Full Text] [Related]
8. Interfacial Properties and Mechanisms Dominating Gas Hydrate Cohesion and Adhesion in Liquid and Vapor Hydrocarbon Phases. Hu S; Koh CA Langmuir; 2017 Oct; 33(42):11299-11309. PubMed ID: 28922923 [TBL] [Abstract][Full Text] [Related]
9. Clustering in rapid granular flows of binary and continuous particle size distributions. Rice RB; Hrenya CM Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):021302. PubMed ID: 20365558 [TBL] [Abstract][Full Text] [Related]
11. Jamming of particles in a two-dimensional fluid-driven flow. Guariguata A; Pascall MA; Gilmer MW; Sum AK; Sloan ED; Koh CA; Wu DT Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061311. PubMed ID: 23367936 [TBL] [Abstract][Full Text] [Related]
12. Capillarylike fluctuations of a solid-liquid interface in a noncohesive granular system. Luu LH; Castillo G; Mujica N; Soto R Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):040202. PubMed ID: 23679358 [TBL] [Abstract][Full Text] [Related]
13. Compaction of noncohesive and cohesive granular materials under vibrations: Experiments and stochastic model. Mathonnet JE; Sornay P; Nicolas M; Dalloz-Dubrujeaud B Phys Rev E; 2017 Apr; 95(4-1):042904. PubMed ID: 28505849 [TBL] [Abstract][Full Text] [Related]
14. Unraveling agglomeration and deagglomeration in aqueous colloidal dispersions of very small tin dioxide nanoparticles. Mackert V; Schroer MA; Winterer M J Colloid Interface Sci; 2022 Feb; 608(Pt 3):2681-2693. PubMed ID: 34838316 [TBL] [Abstract][Full Text] [Related]
15. Insights into the rheology of cohesive granular media. Mandal S; Nicolas M; Pouliquen O Proc Natl Acad Sci U S A; 2020 Apr; 117(15):8366-8373. PubMed ID: 32241886 [TBL] [Abstract][Full Text] [Related]
16. Bouncing, rolling, energy flows, and cluster formation in a two-dimensional vibrated granular gas. Pérez-Ángel G; Nahmad-Molinari Y Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041303. PubMed ID: 22181131 [TBL] [Abstract][Full Text] [Related]
18. Capability of the TFM Approach to Predict Fluidization of Cohesive Powders. Askarishahi M; Salehi MS; Radl S Ind Eng Chem Res; 2022 Mar; 61(8):3186-3205. PubMed ID: 35264823 [TBL] [Abstract][Full Text] [Related]
19. Droplet and cluster formation in freely falling granular streams. Waitukaitis SR; Grütjen HF; Royer JR; Jaeger HM Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051302. PubMed ID: 21728520 [TBL] [Abstract][Full Text] [Related]
20. Open problems in active chaotic flows: Competition between chaos and order in granular materials. Ottino JM; Khakhar DV Chaos; 2002 Jun; 12(2):400-407. PubMed ID: 12779570 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]