BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 30576368)

  • 1. Heme sensing and detoxification by HatRT contributes to pathogenesis during Clostridium difficile infection.
    Knippel RJ; Zackular JP; Moore JL; Celis AI; Weiss A; Washington MK; DuBois JL; Caprioli RM; Skaar EP
    PLoS Pathog; 2018 Dec; 14(12):e1007486. PubMed ID: 30576368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clostridioides difficile Senses and Hijacks Host Heme for Incorporation into an Oxidative Stress Defense System.
    Knippel RJ; Wexler AG; Miller JM; Beavers WN; Weiss A; de Crécy-Lagard V; Edmonds KA; Giedroc DP; Skaar EP
    Cell Host Microbe; 2020 Sep; 28(3):411-421.e6. PubMed ID: 32526159
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Alam MZ; Madan R
    Toxins (Basel); 2024 May; 16(6):. PubMed ID: 38922136
    [No Abstract]   [Full Text] [Related]  

  • 4. Defining the Roles of TcdA and TcdB in Localized Gastrointestinal Disease, Systemic Organ Damage, and the Host Response during Clostridium difficile Infections.
    Carter GP; Chakravorty A; Pham Nguyen TA; Mileto S; Schreiber F; Li L; Howarth P; Clare S; Cunningham B; Sambol SP; Cheknis A; Figueroa I; Johnson S; Gerding D; Rood JI; Dougan G; Lawley TD; Lyras D
    mBio; 2015 Jun; 6(3):e00551. PubMed ID: 26037121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Clostridium difficile spo0A gene is a persistence and transmission factor.
    Deakin LJ; Clare S; Fagan RP; Dawson LF; Pickard DJ; West MR; Wren BW; Fairweather NF; Dougan G; Lawley TD
    Infect Immun; 2012 Aug; 80(8):2704-11. PubMed ID: 22615253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rho factor mediates flagellum and toxin phase variation and impacts virulence in Clostridioides difficile.
    Trzilova D; Anjuwon-Foster BR; Torres Rivera D; Tamayo R
    PLoS Pathog; 2020 Aug; 16(8):e1008708. PubMed ID: 32785266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Importance of toxin A, toxin B, and CDT in virulence of an epidemic Clostridium difficile strain.
    Kuehne SA; Collery MM; Kelly ML; Cartman ST; Cockayne A; Minton NP
    J Infect Dis; 2014 Jan; 209(1):83-6. PubMed ID: 23935202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ZupT Facilitates Clostridioides difficile Resistance to Host-Mediated Nutritional Immunity.
    Zackular JP; Knippel RJ; Lopez CA; Beavers WN; Maxwell CN; Chazin WJ; Skaar EP
    mSphere; 2020 Mar; 5(2):. PubMed ID: 32161145
    [No Abstract]   [Full Text] [Related]  

  • 9. C. difficile exploits a host metabolite produced during toxin-mediated disease.
    Pruss KM; Sonnenburg JL
    Nature; 2021 May; 593(7858):261-265. PubMed ID: 33911281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The microbial metabolite urolithin A reduces
    Ghosh S; Erickson D; Chua MJ; Collins J; Jala VR
    mSystems; 2024 Feb; 9(2):e0125523. PubMed ID: 38193707
    [No Abstract]   [Full Text] [Related]  

  • 11. Variations in virulence and molecular biology among emerging strains of Clostridium difficile.
    Hunt JJ; Ballard JD
    Microbiol Mol Biol Rev; 2013 Dec; 77(4):567-81. PubMed ID: 24296572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Para-cresol production by Clostridium difficile affects microbial diversity and membrane integrity of Gram-negative bacteria.
    Passmore IJ; Letertre MPM; Preston MD; Bianconi I; Harrison MA; Nasher F; Kaur H; Hong HA; Baines SD; Cutting SM; Swann JR; Wren BW; Dawson LF
    PLoS Pathog; 2018 Sep; 14(9):e1007191. PubMed ID: 30208103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased intestinal permeability and downregulation of absorptive ion transporters
    Peritore-Galve FC; Kaji I; Smith A; Walker LM; Shupe JA; Washington MK; Algood HMS; Dudeja PK; Goldenring JR; Lacy DB
    Gut Microbes; 2023; 15(1):2225841. PubMed ID: 37350393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epidemic ribotypes of Clostridium (now Clostridioides) difficile are likely to be more virulent than non-epidemic ribotypes in animal models.
    Vitucci JC; Pulse M; Tabor-Simecka L; Simecka J
    BMC Microbiol; 2020 Feb; 20(1):27. PubMed ID: 32024477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of CodY protein on metabolism, sporulation and virulence in Clostridioides difficile ribotype 027.
    Daou N; Wang Y; Levdikov VM; Nandakumar M; Livny J; Bouillaut L; Blagova E; Zhang K; Belitsky BR; Rhee K; Wilkinson AJ; Sun X; Sonenshein AL
    PLoS One; 2019; 14(1):e0206896. PubMed ID: 30699117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human intestinal enteroids as a model of
    Engevik MA; Danhof HA; Chang-Graham AL; Spinler JK; Engevik KA; Herrmann B; Endres BT; Garey KW; Hyser JM; Britton RA; Versalovic J
    Am J Physiol Gastrointest Liver Physiol; 2020 May; 318(5):G870-G888. PubMed ID: 32223302
    [No Abstract]   [Full Text] [Related]  

  • 17. The role of toxin A and toxin B in Clostridium difficile infection.
    Kuehne SA; Cartman ST; Heap JT; Kelly ML; Cockayne A; Minton NP
    Nature; 2010 Oct; 467(7316):711-3. PubMed ID: 20844489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pleiotropic roles of Clostridium difficile sin locus.
    Girinathan BP; Ou J; Dupuy B; Govind R
    PLoS Pathog; 2018 Mar; 14(3):e1006940. PubMed ID: 29529083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revealing roles of S-layer protein (SlpA) in
    Wang S; Courreges MC; Xu L; Gurung B; Berryman M; Gu T
    Microbiol Spectr; 2024 Jun; 12(6):e0400523. PubMed ID: 38709045
    [No Abstract]   [Full Text] [Related]  

  • 20. Toxin B is essential for virulence of Clostridium difficile.
    Lyras D; O'Connor JR; Howarth PM; Sambol SP; Carter GP; Phumoonna T; Poon R; Adams V; Vedantam G; Johnson S; Gerding DN; Rood JI
    Nature; 2009 Apr; 458(7242):1176-9. PubMed ID: 19252482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.