These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 30576505)

  • 1. LR_Gapcloser: a tiling path-based gap closer that uses long reads to complete genome assembly.
    Xu GC; Xu TJ; Zhu R; Zhang Y; Li SQ; Wang HW; Li JT
    Gigascience; 2019 Jan; 8(1):. PubMed ID: 30576505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TGS-GapCloser: A fast and accurate gap closer for large genomes with low coverage of error-prone long reads.
    Xu M; Guo L; Gu S; Wang O; Zhang R; Peters BA; Fan G; Liu X; Xu X; Deng L; Zhang Y
    Gigascience; 2020 Sep; 9(9):. PubMed ID: 32893860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GAPPadder: a sensitive approach for closing gaps on draft genomes with short sequence reads.
    Chu C; Li X; Wu Y
    BMC Genomics; 2019 Jun; 20(Suppl 5):426. PubMed ID: 31167639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient hybrid de novo assembly of human genomes with WENGAN.
    Di Genova A; Buena-Atienza E; Ossowski S; Sagot MF
    Nat Biotechnol; 2021 Apr; 39(4):422-430. PubMed ID: 33318652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GMcloser: closing gaps in assemblies accurately with a likelihood-based selection of contig or long-read alignments.
    Kosugi S; Hirakawa H; Tabata S
    Bioinformatics; 2015 Dec; 31(23):3733-41. PubMed ID: 26261222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly accurate long reads are crucial for realizing the potential of biodiversity genomics.
    Hotaling S; Wilcox ER; Heckenhauer J; Stewart RJ; Frandsen PB
    BMC Genomics; 2023 Mar; 24(1):117. PubMed ID: 36927511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation and Validation of Assembling Corrected PacBio Long Reads for Microbial Genome Completion via Hybrid Approaches.
    Lin HH; Liao YC
    PLoS One; 2015; 10(12):e0144305. PubMed ID: 26641475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid assembly of the large and highly repetitive genome of
    Zimin AV; Puiu D; Luo MC; Zhu T; Koren S; Marçais G; Yorke JA; Dvořák J; Salzberg SL
    Genome Res; 2017 May; 27(5):787-792. PubMed ID: 28130360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DENTIST-using long reads for closing assembly gaps at high accuracy.
    Ludwig A; Pippel M; Myers G; Hiller M
    Gigascience; 2022 Jan; 11():. PubMed ID: 35077539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FastEtch: A Fast Sketch-Based Assembler for Genomes.
    Ghosh P; Kalyanaraman A
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1091-1106. PubMed ID: 28910776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo assembly and phasing of a Korean human genome.
    Seo JS; Rhie A; Kim J; Lee S; Sohn MH; Kim CU; Hastie A; Cao H; Yun JY; Kim J; Kuk J; Park GH; Kim J; Ryu H; Kim J; Roh M; Baek J; Hunkapiller MW; Korlach J; Shin JY; Kim C
    Nature; 2016 Oct; 538(7624):243-247. PubMed ID: 27706134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subset selection of high-depth next generation sequencing reads for de novo genome assembly using MapReduce framework.
    Fang CH; Chang YJ; Chung WC; Hsieh PH; Lin CY; Ho JM
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S9. PubMed ID: 26678408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative evaluation of genome assembly reconciliation tools.
    Alhakami H; Mirebrahim H; Lonardi S
    Genome Biol; 2017 May; 18(1):93. PubMed ID: 28521789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FGAP: an automated gap closing tool.
    Piro VC; Faoro H; Weiss VA; Steffens MB; Pedrosa FO; Souza EM; Raittz RT
    BMC Res Notes; 2014 Jun; 7():371. PubMed ID: 24938749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SpLitteR: diploid genome assembly using TELL-Seq linked-reads and assembly graphs.
    Tolstoganov I; Chen Z; Pevzner P; Korobeynikov A
    PeerJ; 2024; 12():e18050. PubMed ID: 39351368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tigmint: correcting assembly errors using linked reads from large molecules.
    Jackman SD; Coombe L; Chu J; Warren RL; Vandervalk BP; Yeo S; Xue Z; Mohamadi H; Bohlmann J; Jones SJM; Birol I
    BMC Bioinformatics; 2018 Oct; 19(1):393. PubMed ID: 30367597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The SAMBA tool uses long reads to improve the contiguity of genome assemblies.
    Zimin AV; Salzberg SL
    PLoS Comput Biol; 2022 Feb; 18(2):e1009860. PubMed ID: 35120119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating long-read de novo assembly tools for eukaryotic genomes: insights and considerations.
    Cosma BM; Shirali Hossein Zade R; Jordan EN; van Lent P; Peng C; Pillay S; Abeel T
    Gigascience; 2022 Dec; 12():. PubMed ID: 38000912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AlignGraph2: similar genome-assisted reassembly pipeline for PacBio long reads.
    Huang S; He X; Wang G; Bao E
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33621981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High quality 3C de novo assembly and annotation of a multidrug resistant ST-111 Pseudomonas aeruginosa genome: Benchmark of hybrid and non-hybrid assemblers.
    Molina-Mora JA; Campos-Sánchez R; Rodríguez C; Shi L; García F
    Sci Rep; 2020 Jan; 10(1):1392. PubMed ID: 31996747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.