These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 30576523)

  • 1. A novel discovery of a long terminal repeat retrotransposon-induced hybrid weakness in rice.
    Nadir S; Li W; Zhu Q; Khan S; Zhang XL; Zhang H; Wei ZF; Li MT; Zhou L; Li CY; Chen LJ; Lee DS
    J Exp Bot; 2019 Feb; 70(4):1197-1207. PubMed ID: 30576523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary history of Oryza sativa LTR retrotransposons: a preliminary survey of the rice genome sequences.
    Gao L; McCarthy EM; Ganko EW; McDonald JF
    BMC Genomics; 2004 Mar; 5(1):18. PubMed ID: 15040813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long terminal repeat retrotransposons of Oryza sativa.
    McCarthy EM; Liu J; Lizhi G; McDonald JF
    Genome Biol; 2002 Sep; 3(10):RESEARCH0053. PubMed ID: 12372141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice.
    Ma J; Devos KM; Bennetzen JL
    Genome Res; 2004 May; 14(5):860-9. PubMed ID: 15078861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the blast resistance gene Pit in rice cultivars using functional markers.
    Hayashi K; Yasuda N; Fujita Y; Koizumi S; Yoshida H
    Theor Appl Genet; 2010 Nov; 121(7):1357-67. PubMed ID: 20589366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do genetic recombination and gene density shape the pattern of DNA elimination in rice long terminal repeat retrotransposons?
    Tian Z; Rizzon C; Du J; Zhu L; Bennetzen JL; Jackson SA; Gaut BS; Ma J
    Genome Res; 2009 Dec; 19(12):2221-30. PubMed ID: 19789376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural selection on gene function drives the evolution of LTR retrotransposon families in the rice genome.
    Baucom RS; Estill JC; Leebens-Mack J; Bennetzen JL
    Genome Res; 2009 Feb; 19(2):243-54. PubMed ID: 19029538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LTR retrotransposons in rice (Oryza sativa, L.): recent burst amplifications followed by rapid DNA loss.
    Vitte C; Panaud O; Quesneville H
    BMC Genomics; 2007 Jul; 8():218. PubMed ID: 17617907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic paleontology provides evidence for two distinct origins of Asian rice (Oryza sativa L.).
    Vitte C; Ishii T; Lamy F; Brar D; Panaud O
    Mol Genet Genomics; 2004 Dec; 272(5):504-11. PubMed ID: 15503144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted deletion of rice retrotransposon Tos17 via CRISPR/Cas9.
    Saika H; Mori A; Endo M; Toki S
    Plant Cell Rep; 2019 Apr; 38(4):455-458. PubMed ID: 30465094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent retrotransposon insertions are methylated and phylogenetically clustered in japonica rice (Oryza sativa spp. japonica).
    Vonholdt BM; Takuno S; Gaut BS
    Mol Biol Evol; 2012 Oct; 29(10):3193-203. PubMed ID: 22593226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific suppression of long terminal repeat retrotransposon mobilization in plants.
    Brestovitsky A; Iwasaki M; Cho J; Adulyanukosol N; Paszkowski J; Catoni M
    Plant Physiol; 2023 Apr; 191(4):2245-2255. PubMed ID: 36583226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elimination of a Retrotransposon for Quenching Genome Instability in Modern Rice.
    Peng Y; Zhang Y; Gui Y; An D; Liu J; Xu X; Li Q; Wang J; Wang W; Shi C; Fan L; Lu B; Deng Y; Teng S; He Z
    Mol Plant; 2019 Oct; 12(10):1395-1407. PubMed ID: 31228579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitive detection of pre-integration intermediates of long terminal repeat retrotransposons in crop plants.
    Cho J; Benoit M; Catoni M; Drost HG; Brestovitsky A; Oosterbeek M; Paszkowski J
    Nat Plants; 2019 Jan; 5(1):26-33. PubMed ID: 30531940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic and cytological analysis of a novel type of low temperature-dependent intrasubspecific hybrid weakness in rice.
    Fu CY; Wang F; Sun BR; Liu WG; Li JH; Deng RF; Liu DL; Liu ZR; Zhu MS; Liao YL; Chen JW
    PLoS One; 2013; 8(8):e73886. PubMed ID: 24023693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic and physiological analysis of a novel type of interspecific hybrid weakness in rice.
    Chen C; Chen H; Shan JX; Zhu MZ; Shi M; Gao JP; Lin HX
    Mol Plant; 2013 May; 6(3):716-28. PubMed ID: 23220941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LTR retrotransposons reveal recent extensive inter-subspecies nonreciprocal recombination in Asian cultivated rice.
    Wang H; Xu Z; Yu H
    BMC Genomics; 2008 Nov; 9():565. PubMed ID: 19038031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retrotranspositions in orthologous regions of closely related grass species.
    Du C; Swigonová Z; Messing J
    BMC Evol Biol; 2006 Aug; 6():62. PubMed ID: 16914031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid weakness in a rice interspecific hybrid is nitrogen-dependent, and accompanied by changes in gene expression at both total transcript level and parental allele partitioning.
    Sun S; Wu Y; Lin X; Wang J; Yu J; Sun Y; Miao Y; Li Q; Sanguinet KA; Liu B
    PLoS One; 2017; 12(3):e0172919. PubMed ID: 28248994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transpositional reactivation of two LTR retrotransposons in rice-Zizania recombinant inbred lines (RILs).
    Wang HY; Tian Q; Ma YQ; Wu Y; Miao GJ; Ma Y; Cao DH; Wang XL; Lin C; Pang J; Liu B
    Hereditas; 2010 Dec; 147(6):264-77. PubMed ID: 21166796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.