BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 30576589)

  • 1. The regulation of skeletal muscle fatigability and mitochondrial function by chronically elevated interleukin-6.
    VanderVeen BN; Fix DK; Montalvo RN; Counts BR; Smuder AJ; Murphy EA; Koh HJ; Carson JA
    Exp Physiol; 2019 Mar; 104(3):385-397. PubMed ID: 30576589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity.
    Lantier L; Fentz J; Mounier R; Leclerc J; Treebak JT; Pehmøller C; Sanz N; Sakakibara I; Saint-Amand E; Rimbaud S; Maire P; Marette A; Ventura-Clapier R; Ferry A; Wojtaszewski JF; Foretz M; Viollet B
    FASEB J; 2014 Jul; 28(7):3211-24. PubMed ID: 24652947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of Skeletal Muscle DRP-1 and FIS-1 Protein Expression by IL-6 Signaling.
    Fix DK; VanderVeen BN; Counts BR; Carson JA
    Oxid Med Cell Longev; 2019; 2019():8908457. PubMed ID: 30918582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of gp130 in basal and exercise-trained skeletal muscle mitochondrial quality control.
    Fix DK; Hardee JP; Gao S; VanderVeen BN; Velázquez KT; Carson JA
    J Appl Physiol (1985); 2018 Jun; 124(6):1456-1470. PubMed ID: 29389248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systemic IL-6 regulation of eccentric contraction-induced muscle protein synthesis.
    Hardee JP; Fix DK; Wang X; Goldsmith EC; Koh HJ; Carson JA
    Am J Physiol Cell Physiol; 2018 Jul; 315(1):C91-C103. PubMed ID: 29641213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Skeletal muscle function during the progression of cancer cachexia in the male Apc
    VanderVeen BN; Hardee JP; Fix DK; Carson JA
    J Appl Physiol (1985); 2018 Mar; 124(3):684-695. PubMed ID: 29122966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of p53 in mitochondrial biogenesis and apoptosis in skeletal muscle.
    Saleem A; Adhihetty PJ; Hood DA
    Physiol Genomics; 2009 Mar; 37(1):58-66. PubMed ID: 19106183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interleukin-6 modifies mRNA expression in mouse skeletal muscle.
    Adser H; Wojtaszewski JF; Jakobsen AH; Kiilerich K; Hidalgo J; Pilegaard H
    Acta Physiol (Oxf); 2011 Jun; 202(2):165-73. PubMed ID: 21352507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle-specific deletion of exons 2 and 3 of the IL15RA gene in mice: effects on contractile properties of fast and slow muscles.
    O'Connell G; Guo G; Stricker J; Quinn LS; Ma A; Pistilli EE
    J Appl Physiol (1985); 2015 Feb; 118(4):437-48. PubMed ID: 25505029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of Nrf2 in skeletal muscle contractile and mitochondrial function.
    Crilly MJ; Tryon LD; Erlich AT; Hood DA
    J Appl Physiol (1985); 2016 Sep; 121(3):730-40. PubMed ID: 27471236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative capacity and fatigability in run-trained malignant hyperthermia-susceptible mice.
    Rouviere C; Corona BT; Ingalls CP
    Muscle Nerve; 2012 Apr; 45(4):586-96. PubMed ID: 22431093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capsiate supplementation reduces oxidative cost of contraction in exercising mouse skeletal muscle in vivo.
    Yashiro K; Tonson A; Pecchi É; Vilmen C; Le Fur Y; Bernard M; Bendahan D; Giannesini B
    PLoS One; 2015; 10(6):e0128016. PubMed ID: 26030806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of postexercise temperature elevation on postexercise glycogen metabolism of isolated mouse soleus muscle.
    Blackwood SJ; Hanya E; Katz A
    J Appl Physiol (1985); 2019 Apr; 126(4):1103-1109. PubMed ID: 30730817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Parkin and endurance training on mitochondrial turnover in skeletal muscle.
    Chen CCW; Erlich AT; Hood DA
    Skelet Muscle; 2018 Mar; 8(1):10. PubMed ID: 29549884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of TFE3 in mediating skeletal muscle mitochondrial adaptations to exercise training.
    Wong JC; Oliveira AN; Khemraj P; Hood DA
    J Appl Physiol (1985); 2024 Feb; 136(2):262-273. PubMed ID: 38095014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skeletal muscle mass recovery from atrophy in IL-6 knockout mice.
    Washington TA; White JP; Davis JM; Wilson LB; Lowe LL; Sato S; Carson JA
    Acta Physiol (Oxf); 2011 Aug; 202(4):657-69. PubMed ID: 21418148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skeletal muscle mitochondrial function and exercise capacity are not impaired in mice with knockout of STAT3.
    Dent JR; Hetrick B; Tahvilian S; Sathe A; Greyslak K; LaBarge SA; Svensson K; McCurdy CE; Schenk S
    J Appl Physiol (1985); 2019 Oct; 127(4):1117-1127. PubMed ID: 31513449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mitochondrial-targeted antioxidant improves myofilament Ca
    Gandra PG; Shiah AA; Nogueira L; Hogan MC
    J Physiol; 2018 Mar; 596(6):1079-1089. PubMed ID: 29334129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyperhomocysteinemia associated skeletal muscle weakness involves mitochondrial dysfunction and epigenetic modifications.
    Veeranki S; Winchester LJ; Tyagi SC
    Biochim Biophys Acta; 2015 May; 1852(5):732-41. PubMed ID: 25615794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protective role of Parkin in skeletal muscle contractile and mitochondrial function.
    Gouspillou G; Godin R; Piquereau J; Picard M; Mofarrahi M; Mathew J; Purves-Smith FM; Sgarioto N; Hepple RT; Burelle Y; Hussain SNA
    J Physiol; 2018 Jul; 596(13):2565-2579. PubMed ID: 29682760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.