These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 30576692)

  • 1. Effect of density-dependent individual movement on emerging spatial population distribution: Brownian motion vs Levy flights.
    Ellis J; Petrovskaya N; Petrovskii S
    J Theor Biol; 2019 Mar; 464():159-178. PubMed ID: 30576692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational study of density-dependent individual movement and the formation of population clusters in two-dimensional spatial domains.
    Ellis JR; Petrovskaya NB
    J Theor Biol; 2020 Nov; 505():110421. PubMed ID: 32735993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competitive Brownian and Lévy walkers.
    Heinsalu E; Hernández-García E; López C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041105. PubMed ID: 22680418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clustering determines who survives for competing Brownian and Lévy walkers.
    Heinsalu E; Hernández-Garcia E; López C
    Phys Rev Lett; 2013 Jun; 110(25):258101. PubMed ID: 23829760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How superdiffusion gets arrested: ecological encounters explain shift from Lévy to Brownian movement.
    de Jager M; Bartumeus F; Kölzsch A; Weissing FJ; Hengeveld GM; Nolet BA; Herman PM; van de Koppel J
    Proc Biol Sci; 2014 Jan; 281(1774):20132605. PubMed ID: 24225464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lévy flight and Brownian search patterns of a free-ranging predator reflect different prey field characteristics.
    Sims DW; Humphries NE; Bradford RW; Bruce BD
    J Anim Ecol; 2012 Mar; 81(2):432-42. PubMed ID: 22004140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal search in interacting populations: Gaussian jumps versus Lévy flights.
    Martínez-García R; Calabrese JM; López C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032718. PubMed ID: 24730885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rectified brownian transport in corrugated channels: Fractional brownian motion and Lévy flights.
    Ai BQ; Shao ZG; Zhong WR
    J Chem Phys; 2012 Nov; 137(17):174101. PubMed ID: 23145711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lévy meets poisson: a statistical artifact may lead to erroneous recategorization of Lévy walk as Brownian motion.
    Gautestad AO
    Am Nat; 2013 Mar; 181(3):440-50. PubMed ID: 23448891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial Memory and Taxis-Driven Pattern Formation in Model Ecosystems.
    Potts JR; Lewis MA
    Bull Math Biol; 2019 Jul; 81(7):2725-2747. PubMed ID: 31165407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analyzing animal movements using Brownian bridges.
    Horne JS; Garton EO; Krone SM; Lewis JS
    Ecology; 2007 Sep; 88(9):2354-63. PubMed ID: 17918412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Front dynamics in a two-species competition model driven by Lévy flights.
    Hanert E
    J Theor Biol; 2012 May; 300():134-42. PubMed ID: 22285785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From Lévy to Brownian: a computational model based on biological fluctuation.
    Nurzaman SG; Matsumoto Y; Nakamura Y; Shirai K; Koizumi S; Ishiguro H
    PLoS One; 2011 Feb; 6(2):e16168. PubMed ID: 21304911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minimizing errors in identifying Lévy flight behaviour of organisms.
    Sims DW; Righton D; Pitchford JW
    J Anim Ecol; 2007 Mar; 76(2):222-9. PubMed ID: 17302829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pattern formation, long-term transients, and the Turing-Hopf bifurcation in a space- and time-discrete predator-prey system.
    Rodrigues LA; Mistro DC; Petrovskii S
    Bull Math Biol; 2011 Aug; 73(8):1812-40. PubMed ID: 20972714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement error causes scale-dependent threshold erosion of biological signals in animal movement data.
    Bradshaw CJ; Sims DW; Hays GC
    Ecol Appl; 2007 Mar; 17(2):628-38. PubMed ID: 17489266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of Allee effects for Gaussian and Lévy dispersals in an environmental niche.
    Dipierro S; Proietti Lippi E; Valdinoci E
    J Math Biol; 2024 Jun; 89(2):19. PubMed ID: 38916625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resource distribution and internal factors interact to govern movement of a freshwater snail.
    Cloyed CS; Dell AI
    Proc Biol Sci; 2019 Sep; 286(1911):20191610. PubMed ID: 31551058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the interplay between small and large scales movements in a neotropical small mammal.
    Brigatti E; Ríos-Uzeda B; Vieira MV
    Mov Ecol; 2024 Mar; 12(1):23. PubMed ID: 38528635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lévy walks evolve through interaction between movement and environmental complexity.
    de Jager M; Weissing FJ; Herman PM; Nolet BA; van de Koppel J
    Science; 2011 Jun; 332(6037):1551-3. PubMed ID: 21700872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.