These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 30577078)
1. Abscisic acid-mediated modifications of radial apoplastic transport pathway play a key role in cadmium uptake in hyperaccumulator Sedum alfredii. Tao Q; Jupa R; Liu Y; Luo J; Li J; Kováč J; Li B; Li Q; Wu K; Liang Y; Lux A; Wang C; Li T Plant Cell Environ; 2019 May; 42(5):1425-1440. PubMed ID: 30577078 [TBL] [Abstract][Full Text] [Related]
2. Ethylene-mediated apoplastic barriers development involved in cadmium accumulation in root of hyperaccumulator Sedum alfredii. Liu Y; Tao Q; Li J; Guo X; Luo J; Jupa R; Liang Y; Li T J Hazard Mater; 2021 Feb; 403():123729. PubMed ID: 33264898 [TBL] [Abstract][Full Text] [Related]
3. Low calcium-induced delay in development of root apoplastic barriers enhances Cd uptake and accumulation in Sedum alfredii. Liu Y; Tao Q; Guo X; Luo J; Li J; Liang Y; Li T Sci Total Environ; 2020 Jun; 723():137810. PubMed ID: 32213402 [TBL] [Abstract][Full Text] [Related]
4. Abscisic acid-mediated modifications in water transport continuum are involved in cadmium hyperaccumulation in Sedum alfredii. Tao Q; Jupa R; Dong Q; Yang X; Liu Y; Li B; Yuan S; Yin J; Xu Q; Li T; Wang C Chemosphere; 2021 Apr; 268():129339. PubMed ID: 33360145 [TBL] [Abstract][Full Text] [Related]
5. The apoplasmic pathway via the root apex and lateral roots contributes to Cd hyperaccumulation in the hyperaccumulator Sedum alfredii. Tao Q; Jupa R; Luo J; Lux A; Kováč J; Wen Y; Zhou Y; Jan J; Liang Y; Li T J Exp Bot; 2017 Jan; 68(3):739-751. PubMed ID: 28204505 [TBL] [Abstract][Full Text] [Related]
6. Exposure of cerium oxide nanoparticles to the hyperaccumulator Sedum alfredii decreases the uptake of cadmium via the apoplastic pathway. Liu Y; Persson DP; Li J; Liang Y; Li T J Hazard Mater; 2021 Sep; 417():125955. PubMed ID: 33975168 [TBL] [Abstract][Full Text] [Related]
7. The involvement of nitric oxide and ethylene on the formation of endodermal barriers in response to Cd in hyperaccumulator Sedum alfredii. Liu Y; Lu M; Persson DP; Luo J; Liang Y; Li T Environ Pollut; 2022 Aug; 307():119530. PubMed ID: 35636714 [TBL] [Abstract][Full Text] [Related]
8. Symplasmic and transmembrane zinc transport is modulated by cadmium in the Cd/Zn hyperaccumulator Sedum alfredii. Cao K; Jaime-Pérez N; Mijovilovich A; Morina F; Bokhari SNH; Liu Y; Küpper H; Tao Q Ecotoxicol Environ Saf; 2024 Apr; 275():116272. PubMed ID: 38564870 [TBL] [Abstract][Full Text] [Related]
9. Cadmium uptake and xylem loading are active processes in the hyperaccumulator Sedum alfredii. Lu LL; Tian SK; Yang XE; Li TQ; He ZL J Plant Physiol; 2009 Apr; 166(6):579-87. PubMed ID: 18937997 [TBL] [Abstract][Full Text] [Related]
10. Exogenous abscisic acid (ABA) promotes cadmium (Cd) accumulation in Sedum alfredii Hance by regulating the expression of Cd stress response genes. Lu Q; Chen S; Li Y; Zheng F; He B; Gu M Environ Sci Pollut Res Int; 2020 Mar; 27(8):8719-8731. PubMed ID: 31912395 [TBL] [Abstract][Full Text] [Related]
11. Non-invasive microelectrode cadmium flux measurements reveal the spatial characteristics and real-time kinetics of cadmium transport in hyperaccumulator and nonhyperaccumulator ecotypes of Sedum alfredii. Sun J; Wang R; Liu Z; Ding Y; Li T J Plant Physiol; 2013 Feb; 170(3):355-9. PubMed ID: 23261265 [TBL] [Abstract][Full Text] [Related]
12. Cd-induced difference in root characteristics along root apex contributes to variation in Cd uptake and accumulation between two contrasting ecotypes of Sedum alfredii. Tao Q; Liu Y; Li M; Li J; Luo J; Lux A; Kováč J; Yuan S; Li B; Li Q; Li H; Li T; Wang C Chemosphere; 2020 Mar; 243():125290. PubMed ID: 31759213 [TBL] [Abstract][Full Text] [Related]
13. Cadmium Exposure-Sedum alfredii Planting Interactions Shape the Bacterial Community in the Hyperaccumulator Plant Rhizosphere. Hou D; Lin Z; Wang R; Ge J; Wei S; Xie R; Wang H; Wang K; Hu Y; Yang X; Lu L; Tian S Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29654182 [TBL] [Abstract][Full Text] [Related]
14. Role of sulfur assimilation pathway in cadmium hyperaccumulation by Sedum alfredii Hance. Liang J; Shohag MJ; Yang X; Tian S; Zhang Y; Feng Y; He Z Ecotoxicol Environ Saf; 2014 Feb; 100():159-65. PubMed ID: 24239266 [TBL] [Abstract][Full Text] [Related]
15. Enhanced root-to-shoot translocation of cadmium in the hyperaccumulating ecotype of Sedum alfredii. Lu LL; Tian SK; Yang XE; Wang XC; Brown P; Li TQ; He ZL J Exp Bot; 2008; 59(11):3203-13. PubMed ID: 18603654 [TBL] [Abstract][Full Text] [Related]
16. Effects of cadmium on ultrastructure and antioxidative defense system in hyperaccumulator and non-hyperaccumulator ecotypes of Sedum alfredii Hance. Jin X; Yang X; Islam E; Liu D; Mahmood Q J Hazard Mater; 2008 Aug; 156(1-3):387-97. PubMed ID: 18242844 [TBL] [Abstract][Full Text] [Related]
17. Enhanced expression of SaHMA3 plays critical roles in Cd hyperaccumulation and hypertolerance in Cd hyperaccumulator Sedum alfredii Hance. Zhang J; Zhang M; Shohag MJ; Tian S; Song H; Feng Y; Yang X Planta; 2016 Mar; 243(3):577-89. PubMed ID: 26547194 [TBL] [Abstract][Full Text] [Related]
18. Cadmium-induced nitric oxide burst enhances Cd tolerance at early stage in roots of a hyperaccumulator Sedum alfredii partially by altering glutathione metabolism. Hu Y; Lu L; Tian S; Li S; Liu X; Gao X; Zhou W; Lin X Sci Total Environ; 2019 Feb; 650(Pt 2):2761-2770. PubMed ID: 30373054 [TBL] [Abstract][Full Text] [Related]
19. Mobilization of cadmium by dissolved organic matter in the rhizosphere of hyperaccumulator Sedum alfredii. Li T; Liang C; Han X; Yang X Chemosphere; 2013 May; 91(7):970-6. PubMed ID: 23466273 [TBL] [Abstract][Full Text] [Related]
20. Water uptake by roots: effects of water deficit. Steudle E J Exp Bot; 2000 Sep; 51(350):1531-42. PubMed ID: 11006304 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]