These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 30577085)

  • 41. Detecting sRNAs by Northern blotting.
    López-Gomollón S
    Methods Mol Biol; 2011; 732():25-38. PubMed ID: 21431703
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fluorescence In Situ Imaging of Dendritic RNAs at Single-Molecule Resolution.
    Batish M; Tyagi S
    Curr Protoc Neurosci; 2019 Sep; 89(1):e79. PubMed ID: 31532916
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Leaf-FISH: In Situ Hybridization Method for Visualizing Bacterial Taxa on Plant Surfaces.
    Peredo EL; Simmons S
    Methods Mol Biol; 2021; 2246():111-128. PubMed ID: 33576986
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In Situ Localization of Small RNAs in Plants.
    Marco CF; Skopelitis DS; Timmermans MCP
    Methods Mol Biol; 2019; 1932():159-173. PubMed ID: 30701499
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Temporal Small RNA Expression Profiling under Drought Reveals a Potential Regulatory Role of Small Nucleolar RNAs in the Drought Responses of Maize.
    Zheng J; Zeng E; Du Y; He C; Hu Y; Jiao Z; Wang K; Li W; Ludens M; Fu J; Wang H; White FF; Wang G; Liu S
    Plant Genome; 2019 Mar; 12(1):. PubMed ID: 30951096
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genome-wide identification of AGO18b-bound miRNAs and phasiRNAs in maize by cRIP-seq.
    Sun W; Chen D; Xue Y; Zhai L; Zhang D; Cao Z; Liu L; Cheng C; Zhang Y; Zhang Z
    BMC Genomics; 2019 Aug; 20(1):656. PubMed ID: 31419938
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Detection of small noncoding RNAs by in situ hybridization using probes of 2'-O-methyl RNA + LNA.
    Søe MJ; Dufva M; Holmstrøm K
    Methods Mol Biol; 2014; 1173():113-21. PubMed ID: 24920364
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sensitive fluorescence in situ hybridization signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation.
    Kato A; Albert PS; Vega JM; Birchler JA
    Biotech Histochem; 2006; 81(2-3):71-8. PubMed ID: 16908431
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Super-Resolution Single Molecule FISH at the Drosophila Neuromuscular Junction.
    Titlow JS; Yang L; Parton RM; Palanca A; Davis I
    Methods Mol Biol; 2018; 1649():163-175. PubMed ID: 29130196
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Small RNA-mediated regulation in bacteria: A growing palette of diverse mechanisms.
    Dutta T; Srivastava S
    Gene; 2018 May; 656():60-72. PubMed ID: 29501814
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Highly Sensitive and Multiplexed In Situ RNA Profiling with Cleavable Fluorescent Tyramide.
    Xiao L; Labaer J; Guo J
    Cells; 2021 May; 10(6):. PubMed ID: 34063986
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Single-Molecule Fluorescence In Situ Hybridization (FISH) of Circular RNA CDR1as.
    Kocks C; Boltengagen A; Piwecka M; Rybak-Wolf A; Rajewsky N
    Methods Mol Biol; 2018; 1724():77-96. PubMed ID: 29322442
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Target-enrichment sequencing for detailed characterization of small RNAs.
    Nguyen Q; Aguado J; Iannelli F; Suzuki AM; Rossiello F; d'Adda di Fagagna F; Carninci P
    Nat Protoc; 2018 Apr; 13(4):768-786. PubMed ID: 29565901
    [TBL] [Abstract][Full Text] [Related]  

  • 54. LNA probes substantially improve the detection of bacterial endosymbionts in whole mount of insects by fluorescent in-situ hybridization.
    Priya NG; Pandey N; Rajagopal R
    BMC Microbiol; 2012 May; 12():81. PubMed ID: 22624773
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Labeling meiotic chromosomes in maize with fluorescence in situ hybridization.
    Gao Z; Han F; Danilova TV; Lamb JC; Albert PS; Birchler JA
    Methods Mol Biol; 2013; 990():35-43. PubMed ID: 23559200
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification and expression profiles of sRNAs and their biogenesis and action-related genes in male and female cones of Pinus tabuliformis.
    Niu SH; Liu C; Yuan HW; Li P; Li Y; Li W
    BMC Genomics; 2015 Sep; 16(1):693. PubMed ID: 26369937
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Preparing Maize Synaptonemal Complex Spreads and Sequential Immunofluorescence and Fluorescence In Situ Hybridization.
    Stack SM; Shearer LA; Lohmiller LD; Anderson LK
    Methods Mol Biol; 2020; 2061():79-115. PubMed ID: 31583655
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fluorescent in situ hybridization of synaptic proteins imaged with super-resolution STED microscopy.
    Zhang WI; Röhse H; Rizzoli SO; Opazo F
    Microsc Res Tech; 2014 Jul; 77(7):517-27. PubMed ID: 24723361
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Method for multiplex cellular detection of mRNAs using quantum dot fluorescent in situ hybridization.
    Chan P; Yuen T; Ruf F; Gonzalez-Maeso J; Sealfon SC
    Nucleic Acids Res; 2005 Oct; 33(18):e161. PubMed ID: 16224100
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Isolation and Detection Methods of Plant miRNAs.
    Vera-Hernández PF; de Folter S; Rosas-Cárdenas FF
    Methods Mol Biol; 2019; 1932():109-120. PubMed ID: 30701495
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.