BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 30577106)

  • 1. Experiments and numerical simulation on the degradation processes of carbamazepine and triclosan in surface water: A case study for the Shahe Stream, South China.
    Yuan X; Li S; Hu J; Yu M; Li Y; Wang Z
    Sci Total Environ; 2019 Mar; 655():1125-1138. PubMed ID: 30577106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbamazepine, triclocarban and triclosan biodegradation and the phylotypes and functional genes associated with xenobiotic degradation in four agricultural soils.
    Thelusmond JR; Strathmann TJ; Cupples AM
    Sci Total Environ; 2019 Mar; 657():1138-1149. PubMed ID: 30677881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of Triclosan and Carbamazepine in Two Agricultural and Garden Soils with Different Textures Amended with Composted Sewage Sludge.
    Shao Y; Yang K; Jia R; Tian C; Zhu Y
    Int J Environ Res Public Health; 2018 Nov; 15(11):. PubMed ID: 30441878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of carbamazepine by UV/chlorine advanced oxidation process and formation of disinfection by-products.
    Zhou S; Xia Y; Li T; Yao T; Shi Z; Zhu S; Gao N
    Environ Sci Pollut Res Int; 2016 Aug; 23(16):16448-55. PubMed ID: 27164884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sorption and degradation of pharmaceuticals and personal care products (PPCPs) in soils.
    Yu Y; Liu Y; Wu L
    Environ Sci Pollut Res Int; 2013 Jun; 20(6):4261-7. PubMed ID: 23292228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fate and impact of pharmaceuticals and personal care products during septage co-composting using an in-vessel composter.
    Thomas AR; Kranert M; Philip L
    Waste Manag; 2020 May; 109():109-118. PubMed ID: 32402901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photochemical fate of carbamazepine in surface freshwaters: laboratory measures and modeling.
    De Laurentiis E; Chiron S; Kouras-Hadef S; Richard C; Minella M; Maurino V; Minero C; Vione D
    Environ Sci Technol; 2012 Aug; 46(15):8164-73. PubMed ID: 22795037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of ultraviolet intensity and wavelength on the photolysis of triclosan.
    Son HS; Choi SB; Zoh KD; Khan E
    Water Sci Technol; 2007; 55(1-2):209-16. PubMed ID: 17305142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Occurrence and fate of triclosan and triclocarban in a subtropical river and its estuary.
    Lv M; Sun Q; Xu H; Lin L; Chen M; Yu CP
    Mar Pollut Bull; 2014 Nov; 88(1-2):383-8. PubMed ID: 25227953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of trimethoprim, sulfamethoxazole, and triclosan by the green alga Nannochloris sp.
    Bai X; Acharya K
    J Hazard Mater; 2016 Sep; 315():70-5. PubMed ID: 27179202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging investigator series: dual role of organic matter in the anaerobic degradation of triclosan.
    Wang L; Xu S; Pan B; Yang Y
    Environ Sci Process Impacts; 2017 Apr; 19(4):499-506. PubMed ID: 28290573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhamnolipid-enhanced aerobic biodegradation of triclosan (TCS) by indigenous microorganisms in water-sediment systems.
    Guo Q; Yan J; Wen J; Hu Y; Chen Y; Wu W
    Sci Total Environ; 2016 Nov; 571():1304-11. PubMed ID: 27476727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Occurrence, fate, and mass balance of selected pharmaceutical and personal care products (PPCPs) in an urbanized river.
    Yuan X; Hu J; Li S; Yu M
    Environ Pollut; 2020 Nov; 266(Pt 3):115340. PubMed ID: 32828031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response surface modeling of Carbamazepine (CBZ) removal by Graphene-P25 nanocomposites/UVA process using central composite design.
    Amalraj Appavoo I; Hu J; Huang Y; Li SF; Ong SL
    Water Res; 2014 Jun; 57():270-9. PubMed ID: 24726996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uptake of atenolol, carbamazepine and triclosan by crops irrigated with reclaimed water in a Mediterranean scenario.
    Beltrán EM; Pablos MV; Fernández Torija C; Porcel MÁ; González-Doncel M
    Ecotoxicol Environ Saf; 2020 Mar; 191():110171. PubMed ID: 31958626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and biodegradation kinetics of a new cold-adapted carbamazepine-degrading bacterium, Pseudomonas sp. CBZ-4.
    Li A; Cai R; Di C; Qiu T; Pang C; Yang J; Ma F; Ren N
    J Environ Sci (China); 2013 Nov; 25(11):2281-90. PubMed ID: 24552057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbamazepine is degraded by the bacterial strain Labrys portucalensis F11.
    Bessa VS; Moreira IS; Murgolo S; Mascolo G; Castro PML
    Sci Total Environ; 2019 Nov; 690():739-747. PubMed ID: 31301512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transformation products and reaction pathways of carbamazepine during photocatalytic and sonophotocatalytic treatment.
    Jelic A; Michael I; Achilleos A; Hapeshi E; Lambropoulou D; Perez S; Petrovic M; Fatta-Kassinos D; Barcelo D
    J Hazard Mater; 2013 Dec; 263 Pt 1():177-86. PubMed ID: 23972790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of triclosan in the presence of p-aminobenzoic acid under simulated sunlight irradiation.
    Zhai P; Chen X; Dong W; Li H; Chovelon JM
    Environ Sci Pollut Res Int; 2017 Jan; 24(1):558-567. PubMed ID: 27734316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative degradation of triclosan by potassium permanganate: Kinetics, degradation products, reaction mechanism, and toxicity evaluation.
    Chen J; Qu R; Pan X; Wang Z
    Water Res; 2016 Oct; 103():215-223. PubMed ID: 27459151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.