These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 3057712)

  • 1. Instrument-independent acoustic backscatter coefficient imaging.
    Boote EJ; Zagzebski JA; Madsen EL; Hall TJ
    Ultrason Imaging; 1988 Apr; 10(2):121-38. PubMed ID: 3057712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attenuation and backscatter estimation using video signal analysis applied to B-mode images.
    Knipp BS; Zagzebski JA; Wilson TA; Dong F; Madsen EL
    Ultrason Imaging; 1997 Jul; 19(3):221-33. PubMed ID: 9447670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Backscatter coefficient measurements using a reference phantom to extract depth-dependent instrumentation factors.
    Yao LX; Zagzebski JA; Madsen EL
    Ultrason Imaging; 1990 Jan; 12(1):58-70. PubMed ID: 2184569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A method for estimating an overlying layer correction in quantitative ultrasound imaging.
    Lu ZF; Zagzebski JA; Madsen EL; Dong F
    Ultrason Imaging; 1995 Oct; 17(4):269-90. PubMed ID: 8677562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of ultrasound attenuation and backscatter estimates in layered tissue-mimicking phantoms among three clinical scanners.
    Nam K; Rosado-Mendez IM; Wirtzfeld LA; Ghoshal G; Pawlicki AD; Madsen EL; Lavarello RJ; Oelze ML; Zagzebski JA; O'Brien WD; Hall TJ
    Ultrason Imaging; 2012 Oct; 34(4):209-21. PubMed ID: 23160474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absolute backscatter coefficient estimates of tissue-mimicking phantoms in the 5-50 MHz frequency range.
    McCormick MM; Madsen EL; Deaner ME; Varghese T
    J Acoust Soc Am; 2011 Aug; 130(2):737-43. PubMed ID: 21877789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Backscatter coefficient imaging using a clinical scanner.
    Boote EJ; Zagzebski JA; Madsen EL
    Med Phys; 1992; 19(5):1145-52. PubMed ID: 1435591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trade-offs in data acquisition and processing parameters for backscatter and scatterer size estimations.
    Liu W; Zagzebski JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):340-52. PubMed ID: 20178900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative ultrasound imaging: in vivo results in normal liver.
    Zagzebski JA; Lu ZF; Yao LX
    Ultrason Imaging; 1993 Oct; 15(4):335-51. PubMed ID: 8171756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-frequency ultrasonic attenuation and backscatter coefficients of in vivo normal human dermis and subcutaneous fat.
    Raju BI; Srinivasan MA
    Ultrasound Med Biol; 2001 Nov; 27(11):1543-56. PubMed ID: 11750754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An automated microemboli detection and classification system using backscatter RF signals and differential evolution.
    Ferroudji K; Benoudjit N; Bouakaz A
    Australas Phys Eng Sci Med; 2017 Mar; 40(1):85-99. PubMed ID: 28070749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low Variance Estimation of Backscatter Quantitative Ultrasound Parameters Using Dynamic Programming.
    Vajihi Z; Rosado-Mendez IM; Hall TJ; Rivaz H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Nov; 65(11):2042-2053. PubMed ID: 30222558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical uncertainty in ultrasonic backscatter and attenuation coefficients determined with a reference phantom.
    Yao LX; Zagzebski JA; Madsen EL
    Ultrasound Med Biol; 1991; 17(2):187-94. PubMed ID: 2053215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying Backscatter Anisotropy Using the Reference Phantom Method.
    Guerrero QW; Rosado-Mendez IM; Drehfal LC; Feltovich H; Hall TJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Jul; 64(7):1063-1077. PubMed ID: 28463191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasonic attenuation and backscatter coefficient estimates of rodent-tumor-mimicking structures: comparison of results among clinical scanners.
    Nam K; Rosado-Mendez IM; Wirtzfeld LA; Pawlicki AD; Kumar V; Madsen EL; Ghoshal G; Lavarello RJ; Oelze ML; Bigelow TA; Zagzebski JA; O'Brien WD; Hall TJ
    Ultrason Imaging; 2011 Oct; 33(4):233-50. PubMed ID: 22518954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods for quantifying ultrasound backscatter and two-dimensional video intensity: implications for contrast-enhanced sonography.
    Schwarz KQ; Chen X; Steinmetz S
    J Am Soc Echocardiogr; 1998 Feb; 11(2):155-68. PubMed ID: 9517555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial coherence of backscatter for the nonlinearly produced second harmonic for specific transmit apodizations.
    Fedewa RJ; Wallace KD; Holland MR; Jago JR; Ng GC; Rielly MR; Robinson BS; Miller JG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 May; 51(5):576-88. PubMed ID: 15217235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interlaboratory comparison of backscatter coefficient estimates for tissue-mimicking phantoms.
    Anderson JJ; Herd MT; King MR; Haak A; Hafez ZT; Song J; Oelze ML; Madsen EL; Zagzebski JA; O'Brien WD; Hall TJ
    Ultrason Imaging; 2010 Jan; 32(1):48-64. PubMed ID: 20690431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a Tissue-Mimicking Phantom of the Brain for Ultrasonic Studies.
    Taghizadeh S; Labuda C; Mobley J
    Ultrasound Med Biol; 2018 Dec; 44(12):2813-2820. PubMed ID: 30274683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tests of backscatter coefficient measurement using broadband pulses.
    Chen JF; Zagzebski JA; Madsen EL
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(5):603-7. PubMed ID: 18263225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.