BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 30577423)

  • 1. Antileishmanial Activity of Dimeric Flavonoids Isolated from
    Rocha VPC; Quintino da Rocha C; Ferreira Queiroz E; Marcourt L; Vilegas W; Grimaldi GB; Furrer P; Allémann É; Wolfender JL; Soares MBP
    Molecules; 2018 Dec; 24(1):. PubMed ID: 30577423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anti-Leishmania activity and molecular docking of unusual flavonoids-rich fraction from Arrabidaea brachypoda (Bignoniaceae).
    das Neves MA; do Nascimento JR; Maciel-Silva VL; Dos Santos AM; Junior JJGV; Coelho AJS; Lima MIS; Pereira SRF; da Rocha CQ
    Mol Biochem Parasitol; 2024 Sep; 259():111629. PubMed ID: 38750697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro and in vivo antileishmanial activity of a fluoroquinoline derivate against Leishmania infantum and Leishmania amazonensis species.
    Tavares GSV; Mendonça DVC; Lage DP; Antinarelli LMR; Soyer TG; Senna AJS; Matos GF; Dias DS; Ribeiro PAF; Batista JPT; Poletto JM; Brandão GC; Chávez-Fumagalli MA; Pereira GR; Coimbra ES; Coelho EAF
    Acta Trop; 2019 Mar; 191():29-37. PubMed ID: 30586571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel organic salts based on quinoline derivatives: The in vitro activity trigger apoptosis inhibiting autophagy in Leishmania spp.
    Calixto SL; Glanzmann N; Xavier Silveira MM; da Trindade Granato J; Gorza Scopel KK; Torres de Aguiar T; DaMatta RA; Macedo GC; da Silva AD; Coimbra ES
    Chem Biol Interact; 2018 Sep; 293():141-151. PubMed ID: 30098941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dimeric flavonoids from Arrabidaea brachypoda and assessment of their anti-Trypanosoma cruzi activity.
    da Rocha CQ; Queiroz EF; Meira CS; Moreira DR; Soares MB; Marcourt L; Vilegas W; Wolfender JL
    J Nat Prod; 2014 Jun; 77(6):1345-50. PubMed ID: 24871307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An effective in vitro and in vivo antileishmanial activity and mechanism of action of 8-hydroxyquinoline against Leishmania species causing visceral and tegumentary leishmaniasis.
    Costa Duarte M; dos Reis Lage LM; Lage DP; Mesquita JT; Salles BC; Lavorato SN; Menezes-Souza D; Roatt BM; Alves RJ; Tavares CA; Tempone AG; Coelho EA
    Vet Parasitol; 2016 Feb; 217():81-8. PubMed ID: 26827866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antileishmanial compounds from Connarus suberosus: Metabolomics, isolation and mechanism of action.
    Morais LS; Dusi RG; Demarque DP; Silva RL; Albernaz LC; Báo SN; Merten C; Antinarelli LMR; Coimbra ES; Espindola LS
    PLoS One; 2020; 15(11):e0241855. PubMed ID: 33156835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of antileishmanial drugs activities in an ex vivo model of leishmaniasis.
    Terreros MJS; de Luna LAV; Giorgio S
    Parasitol Int; 2019 Aug; 71():163-166. PubMed ID: 30991111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a Fluorescent Assay to Search New Drugs Using Stable tdTomato-
    García-Bustos MF; Moya Álvarez A; Pérez Brandan C; Parodi C; Sosa AM; Buttazzoni Zuñiga VC; Pastrana OM; Manghera P; Peñalva PA; Marco JD; Barroso PA
    Front Cell Infect Microbiol; 2021; 11():666746. PubMed ID: 34150675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flavonoids induce cell death in Leishmania amazonensis: in vitro characterization by flow cytometry and Raman spectroscopy.
    Araújo MV; Queiroz AC; Silva JFM; Silva AE; Silva JKS; Silva GR; Silva ECO; Souza ST; Fonseca EJS; Camara CA; Silva TMS; Alexandre-Moreira MS
    Analyst; 2019 Sep; 144(17):5232-5244. PubMed ID: 31360935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro evaluation of (-)α-bisabolol as a promising agent against Leishmania amazonensis.
    Rottini MM; Amaral AC; Ferreira JL; Silva JR; Taniwaki NN; Souza Cda S; d'Escoffier LN; Almeida-Souza F; Hardoim Dde J; Gonçalves da Costa SC; Calabrese Kda S
    Exp Parasitol; 2015 Jan; 148():66-72. PubMed ID: 25448354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poloxamer 407 (Pluronic(®) F127)-based polymeric micelles for amphotericin B: In vitro biological activity, toxicity and in vivo therapeutic efficacy against murine tegumentary leishmaniasis.
    Mendonça DV; Lage LM; Lage DP; Chávez-Fumagalli MA; Ludolf F; Roatt BM; Menezes-Souza D; Faraco AA; Castilho RO; Tavares CA; Barichello JM; Duarte MC; Coelho EA
    Exp Parasitol; 2016 Oct; 169():34-42. PubMed ID: 27427166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A chloroquinoline derivate presents effective in vitro and in vivo antileishmanial activity against Leishmania species that cause tegumentary and visceral leishmaniasis.
    Sousa JKT; Antinarelli LMR; Mendonça DVC; Lage DP; Tavares GSV; Dias DS; Ribeiro PAF; Ludolf F; Coelho VTS; Oliveira-da-Silva JA; Perin L; Oliveira BA; Alvarenga DF; Chávez-Fumagalli MA; Brandão GC; Nobre V; Pereira GR; Coimbra ES; Coelho EAF
    Parasitol Int; 2019 Dec; 73():101966. PubMed ID: 31362122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo antileishmanial efficacy of a naphthoquinone derivate incorporated into a Pluronic
    Mendonça DVC; Tavares GSV; Lage DP; Soyer TG; Carvalho LM; Dias DS; Ribeiro PAF; Ottoni FM; Antinarelli LMR; Vale DL; Ludolf F; Duarte MC; Coimbra ES; Chávez-Fumagalli MA; Roatt BM; Menezes-Souza D; Barichello JM; Alves RJ; Coelho EAF
    Biomed Pharmacother; 2019 Jan; 109():779-787. PubMed ID: 30551531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Meglumine antımoniate-TiO2@Ag nanoparticle combinations reduce toxicity of the drug while enhancing its antileishmanial effect.
    Abamor ES; Allahverdiyev AM; Bagirova M; Rafailovich M
    Acta Trop; 2017 May; 169():30-42. PubMed ID: 28111133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antileishmanial activity and trypanothione reductase effects of terpenes from the Amazonian species Croton cajucara Benth (Euphorbiaceae).
    Lima GS; Castro-Pinto DB; Machado GC; Maciel MA; Echevarria A
    Phytomedicine; 2015 Nov; 22(12):1133-7. PubMed ID: 26547537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure/antileishmanial activity relationship study of naphthoquinones and dependency of the mode of action on the substitution patterns.
    Ali A; Assimopoulou AN; Papageorgiou VP; Kolodziej H
    Planta Med; 2011 Dec; 77(18):2003-12. PubMed ID: 21800278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grandiflorenic acid promotes death of promastigotes via apoptosis-like mechanism and affects amastigotes by increasing total iron bound capacity.
    Bortoleti BTDS; Gonçalves MD; Tomiotto-Pellissier F; Miranda-Sapla MM; Assolini JP; Carloto ACM; de Carvalho PGC; Cardoso ILA; Simão ANC; Arakawa NS; Costa IN; Conchon-Costa I; Pavanelli WR
    Phytomedicine; 2018 Jul; 46():11-20. PubMed ID: 30097110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro antileishmanial and antitrypanosomal activities of flavanones from Baccharis retusa DC. (Asteraceae).
    Grecco Sdos S; Reimão JQ; Tempone AG; Sartorelli P; Cunha RL; Romoff P; Ferreira MJ; Fávero OA; Lago JH
    Exp Parasitol; 2012 Feb; 130(2):141-5. PubMed ID: 22143090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of total phenolic fraction derived from extra virgin olive oil for its antileishmanial activity.
    Koutsoni OS; Karampetsou K; Kyriazis ID; Stathopoulos P; Aligiannis N; Halabalaki M; Skaltsounis LA; Dotsika E
    Phytomedicine; 2018 Aug; 47():143-150. PubMed ID: 30166099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.