These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 30577628)

  • 1. The Influence of Inter-Cooling and Electromagnetic Stirring above Liquidus on the Formation of Primary Al₃Zr and Grain Refinement in an Al-0.2%Zr Alloy.
    Guan T; Zhang Z; Bai Y; He M; Zheng H; Zhao H; Li X; Wang P
    Materials (Basel); 2018 Dec; 12(1):. PubMed ID: 30577628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Refinement of Al-Zn-Mg-Cu-Zr Alloy via Internal Cooling with Annular Electromagnetic Stirring above the Liquidus Temperature.
    Guan T; Zhang Z; Bai Y; Li B; Wang P
    Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31340535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of ultrasonic melt treatment on the formation of primary intermetallics and related grain refinement in aluminum alloys.
    Zhang L; Eskin DG; Katgerman L
    J Mater Sci; 2011; 46(15):5252-5259. PubMed ID: 36039104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical and Experimental Study on Melt Treatment for Large-Volume 7075 Alloy by a Modified Annular Electromagnetic Stirring.
    He M; Zhang Z; Mao W; Li B; Bai Y; Xu J
    Materials (Basel); 2019 Mar; 12(5):. PubMed ID: 30862040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grain refinement of commercially pure aluminum with addition of Ti and Zr elements based on crystallography orientation.
    Chen Z; Yan K
    Sci Rep; 2020 Oct; 10(1):16591. PubMed ID: 33024246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overview: Application of heterogeneous nucleation in grain-refining of metals.
    Greer AL
    J Chem Phys; 2016 Dec; 145(21):211704. PubMed ID: 28799349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructures and Macrosegregation of Al-Zn-Mg-Cu Alloy Billet Prepared by Uniform Direct Chill Casting.
    Zhou L; Luo Y; Zhang Z; He M; Xu Y; Zhao Y; Liu S; Dong L; Zhang Z
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33546222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research on Microstructure and Mechanical Properties of Rheological Die Forging Parts of Al-6.54Zn-2.40Cu-2.35Mg-0.10Zr(-Sc) Alloy.
    Zheng H; Zhang Z; Bai Y; Xu Y
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33302411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The growth restriction effect of TiCN nanoparticles on Al-Cu-Zr alloys via ultrasonic treatment.
    Jia Y; Song D; Zhou N; Zheng K; Fu Y; Shu D
    Ultrason Sonochem; 2021 Dec; 80():105829. PubMed ID: 34800839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grain Refinement and Mechanical Properties of Cu-Cr-Zr Alloys with Different Nano-Sized TiC
    Zhang D; Bai F; Wang Y; Wang J; Wang W
    Materials (Basel); 2017 Aug; 10(8):. PubMed ID: 28786937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Duplex Nucleation and Its Effect on the Grain Size and Properties of Near Eutectic Al-Si Alloys.
    Li W; Wu Y; Wu Y; Li Y; Ehti A; Liu X
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grain Refinement Efficiency in Commercial-Purity Aluminum Influenced by the Addition of Al-4Ti Master Alloys with Varying TiAl₃ Particles.
    Zhao J; He J; Tang Q; Wang T; Chen J
    Materials (Basel); 2016 Oct; 9(11):. PubMed ID: 28773987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Influencing Factor of MgAl
    Yang L; Wang L; Yang M
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31948019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance Comparison of Al-Ti Master Alloys with Different Microstructures in Grain Refinement of Commercial Purity Aluminum.
    Ding W; Xia T; Zhao W
    Materials (Basel); 2014 May; 7(5):3663-3676. PubMed ID: 28788642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Rapid Heating and Cooling Conditions on Microstructure Formation in Powder Bed Fusion of Al-Si Hypoeutectic Alloy: A Phase-Field Study.
    Okugawa M; Furushiro Y; Koizumi Y
    Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An overview and critical assessment of the mechanisms of microstructural refinement during ultrasonic solidification of metals.
    Balasubramani N; Venezuela J; Yang N; Wang G; StJohn D; Dargusch M
    Ultrason Sonochem; 2022 Sep; 89():106151. PubMed ID: 36067645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on the grain refinement mechanism of Mg-Al alloy based on carbon addition.
    Sun L; Gao Z; Hu Z; Chen H; Cai J; Cai X
    PLoS One; 2022; 17(8):e0271583. PubMed ID: 35926058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interplay between α(Ti) nucleation and growth during peritectic solidification investigated by phase-field simulations.
    Eiken J; Apel M; Witusiewicz VT; Zollinger J; Hecht U
    J Phys Condens Matter; 2009 Nov; 21(46):464104. PubMed ID: 21715868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects and mechanism of ultrasonic irradiation on solidification microstructure and mechanical properties of binary TiAl alloys.
    Chen R; Zheng D; Ma T; Ding H; Su Y; Guo J; Fu H
    Ultrason Sonochem; 2017 Sep; 38():120-133. PubMed ID: 28633811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Al Addition on Grain Refinement and Phase Transformation of the Mg-Gd-Y-Zn-Mn Alloy Containing LPSO Phase.
    Zuo J; Zhang M; Nakata T; Wang G; Li D; Shi H; Xu C; Wang X; Li W; Fan G; Geng L; Kamado S
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.