BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

642 related articles for article (PubMed ID: 30577727)

  • 1. Dominance and epistatic genetic variances for litter size in pigs using genomic models.
    Vitezica ZG; Reverter A; Herring W; Legarra A
    Genet Sel Evol; 2018 Dec; 50(1):71. PubMed ID: 30577727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orthogonal Estimates of Variances for Additive, Dominance, and Epistatic Effects in Populations.
    Vitezica ZG; Legarra A; Toro MA; Varona L
    Genetics; 2017 Jul; 206(3):1297-1307. PubMed ID: 28522540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of nonadditive effects in yearling weight of tropical beef cattle.
    Raidan FSS; Porto-Neto LR; Li Y; Lehnert SA; Vitezica ZG; Reverter A
    J Anim Sci; 2018 Sep; 96(10):4028-4034. PubMed ID: 30032181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating additive and non-additive genetic variances and predicting genetic merits using genome-wide dense single nucleotide polymorphism markers.
    Su G; Christensen OF; Ostersen T; Henryon M; Lund MS
    PLoS One; 2012; 7(9):e45293. PubMed ID: 23028912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of additive and non-additive genetic effects for fertility and reproduction traits in North American Holstein cattle using genomic information.
    Alves K; Brito LF; Baes CF; Sargolzaei M; Robinson JAB; Schenkel FS
    J Anim Breed Genet; 2020 May; 137(3):316-330. PubMed ID: 31912573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic selection models for directional dominance: an example for litter size in pigs.
    Varona L; Legarra A; Herring W; Vitezica ZG
    Genet Sel Evol; 2018 Jan; 50(1):1. PubMed ID: 29373954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissecting total genetic variance into additive and dominance components of purebred and crossbred pig traits.
    Tusell L; Gilbert H; Vitezica ZG; Mercat MJ; Legarra A; Larzul C
    Animal; 2019 Nov; 13(11):2429-2439. PubMed ID: 31120005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-Enabled Estimates of Additive and Nonadditive Genetic Variances and Prediction of Apple Phenotypes Across Environments.
    Kumar S; Molloy C; Muñoz P; Daetwyler H; Chagné D; Volz R
    G3 (Bethesda); 2015 Oct; 5(12):2711-8. PubMed ID: 26497141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SNP-based mate allocation strategies to maximize total genetic value in pigs.
    González-Diéguez D; Tusell L; Carillier-Jacquin C; Bouquet A; Vitezica ZG
    Genet Sel Evol; 2019 Sep; 51(1):55. PubMed ID: 31558151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-additive genetic variation in growth, carcass and fertility traits of beef cattle.
    Bolormaa S; Pryce JE; Zhang Y; Reverter A; Barendse W; Hayes BJ; Goddard ME
    Genet Sel Evol; 2015 Apr; 47(1):26. PubMed ID: 25880217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic dissection of maternal, additive and non-additive genetic effects for growth and carcass traits in Nile tilapia.
    Joshi R; Meuwissen THE; Woolliams JA; Gjøen HM
    Genet Sel Evol; 2020 Jan; 52(1):1. PubMed ID: 31941436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Significance of linkage disequilibrium and epistasis on genetic variances in noninbred and inbred populations.
    Viana JMS; Garcia AAF
    BMC Genomics; 2022 Apr; 23(1):286. PubMed ID: 35397494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of fitting dominance and additive effects on accuracy of genomic prediction of breeding values in layers.
    Heidaritabar M; Wolc A; Arango J; Zeng J; Settar P; Fulton JE; O'Sullivan NP; Bastiaansen JW; Fernando RL; Garrick DJ; Dekkers JC
    J Anim Breed Genet; 2016 Oct; 133(5):334-46. PubMed ID: 27357473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic relationships reveal significant dominance effects for growth in hybrid Eucalyptus.
    Tan B; Grattapaglia D; Wu HX; Ingvarsson PK
    Plant Sci; 2018 Feb; 267():84-93. PubMed ID: 29362102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The contribution of dominance and inbreeding depression in estimating variance components for litter size in Pannon White rabbits.
    Nagy I; Gorjanc G; Curik I; Farkas J; Kiszlinger H; Szendrő Z
    J Anim Breed Genet; 2013 Aug; 130(4):303-11. PubMed ID: 23855632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Additive and Dominance Genomic Analysis for Litter Size in Purebred and Crossbred Iberian Pigs.
    Srihi H; Noguera JL; Topayan V; Martín de Hijas M; Ibañez-Escriche N; Casellas J; Vázquez-Gómez M; Martínez-Castillero M; Rosas JP; Varona L
    Genes (Basel); 2021 Dec; 13(1):. PubMed ID: 35052355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of dominance variance in purebred Yorkshire swine.
    Culbertson MS; Mabry JW; Misztal I; Gengler N; Bertrand JK; Varona L
    J Anim Sci; 1998 Feb; 76(2):448-51. PubMed ID: 9498351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic prediction using models with dominance and imprinting effects for backfat thickness and average daily gain in Danish Duroc pigs.
    Guo X; Christensen OF; Ostersen T; Wang Y; Lund MS; Su G
    Genet Sel Evol; 2016 Sep; 48(1):67. PubMed ID: 27623617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic Model with Correlation Between Additive and Dominance Effects.
    Xiang T; Christensen OF; Vitezica ZG; Legarra A
    Genetics; 2018 Jul; 209(3):711-723. PubMed ID: 29743175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic dissection of repeatability considering additive and nonadditive genetic effects for semen production traits in beef and dairy bulls.
    Nagai R; Kinukawa M; Watanabe T; Ogino A; Kurogi K; Adachi K; Satoh M; Uemoto Y
    J Anim Sci; 2022 Sep; 100(9):. PubMed ID: 35860946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.