These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30577740)

  • 1. An SVM-based method for assessment of transcription factor-DNA complex models.
    Corona RI; Sudarshan S; Aluru S; Guo JT
    BMC Bioinformatics; 2018 Dec; 19(Suppl 20):506. PubMed ID: 30577740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-based prediction of transcription factor binding sites using a protein-DNA docking approach.
    Liu Z; Guo JT; Li T; Xu Y
    Proteins; 2008 Sep; 72(4):1114-24. PubMed ID: 18320590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A knowledge-based orientation potential for transcription factor-DNA docking.
    Takeda T; Corona RI; Guo JT
    Bioinformatics; 2013 Feb; 29(3):322-30. PubMed ID: 23220572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MD-SVM: a novel SVM-based algorithm for the motif discovery of transcription factor binding sites.
    Hu J; Wang J; Lin J; Liu T; Zhong Y; Liu J; Zheng Y; Gao Y; He J; Shang X
    BMC Bioinformatics; 2019 May; 20(Suppl 7):200. PubMed ID: 31074373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IFACEwat: the interfacial water-implemented re-ranking algorithm to improve the discrimination of near native structures for protein rigid docking.
    Su C; Nguyen TD; Zheng J; Kwoh CK
    BMC Bioinformatics; 2014; 15 Suppl 16(Suppl 16):S9. PubMed ID: 25521441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence-based prediction of protein-binding sites in DNA: comparative study of two SVM models.
    Park B; Im J; Tuvshinjargal N; Lee W; Han K
    Comput Methods Programs Biomed; 2014 Nov; 117(2):158-67. PubMed ID: 25113160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PDRLGB: precise DNA-binding residue prediction using a light gradient boosting machine.
    Deng L; Pan J; Xu X; Yang W; Liu C; Liu H
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):522. PubMed ID: 30598073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification and prediction of protein-protein interaction interface using machine learning algorithm.
    Das S; Chakrabarti S
    Sci Rep; 2021 Jan; 11(1):1761. PubMed ID: 33469042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Residue-level prediction of DNA-binding sites and its application on DNA-binding protein predictions.
    Bhardwaj N; Lu H
    FEBS Lett; 2007 Mar; 581(5):1058-66. PubMed ID: 17316627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability selection for regression-based models of transcription factor-DNA binding specificity.
    Mordelet F; Horton J; Hartemink AJ; Engelhardt BE; Gordân R
    Bioinformatics; 2013 Jul; 29(13):i117-25. PubMed ID: 23812975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benchmarks for flexible and rigid transcription factor-DNA docking.
    Kim R; Corona RI; Hong B; Guo JT
    BMC Struct Biol; 2011 Nov; 11():45. PubMed ID: 22044637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of TF target sites based on atomistic models of protein-DNA complexes.
    Angarica VE; Pérez AG; Vasconcelos AT; Collado-Vides J; Contreras-Moreira B
    BMC Bioinformatics; 2008 Oct; 9():436. PubMed ID: 18922190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNAPred: Accurate Identification of DNA-Binding Sites from Protein Sequence by Ensembled Hyperplane-Distance-Based Support Vector Machines.
    Zhu YH; Hu J; Song XN; Yu DJ
    J Chem Inf Model; 2019 Jun; 59(6):3057-3071. PubMed ID: 30943723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding interface prediction by combining protein-protein docking results.
    Hwang H; Vreven T; Weng Z
    Proteins; 2014 Jan; 82(1):57-66. PubMed ID: 23836482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving protein-protein interactions prediction accuracy using protein evolutionary information and relevance vector machine model.
    An JY; Meng FR; You ZH; Chen X; Yan GY; Hu JP
    Protein Sci; 2016 Oct; 25(10):1825-33. PubMed ID: 27452983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AnkPlex: algorithmic structure for refinement of near-native ankyrin-protein docking.
    Wisitponchai T; Shoombuatong W; Lee VS; Kitidee K; Tayapiwatana C
    BMC Bioinformatics; 2017 Apr; 18(1):220. PubMed ID: 28424069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural mining: self-consistent design on flexible protein-peptide docking and transferable binding affinity potential.
    Liu Z; Dominy BN; Shakhnovich EI
    J Am Chem Soc; 2004 Jul; 126(27):8515-28. PubMed ID: 15238009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new protein-protein docking scoring function based on interface residue properties.
    Bernauer J; Azé J; Janin J; Poupon A
    Bioinformatics; 2007 Mar; 23(5):555-62. PubMed ID: 17237048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An all-atom, distance-dependent scoring function for the prediction of protein-DNA interactions from structure.
    Robertson TA; Varani G
    Proteins; 2007 Feb; 66(2):359-74. PubMed ID: 17078093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.