These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 30577793)

  • 21. Phosphoproteomics reveals network rewiring to a pro-adhesion state in annexin-1-deficient mammary epithelial cells.
    Alli-Shaik A; Wee S; Lim LHK; Gunaratne J
    Breast Cancer Res; 2017 Dec; 19(1):132. PubMed ID: 29233185
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of TGF-b on breast cancer from a quantitative proteomic analysis.
    Ahn J; Yoon Y; Yeu Y; Lee H; Park S
    Comput Biol Med; 2013 Dec; 43(12):2096-102. PubMed ID: 24290926
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reconstruction of global regulatory network from signaling to cellular functions using phosphoproteomic data.
    Kawata K; Yugi K; Hatano A; Kokaji T; Tomizawa Y; Fujii M; Uda S; Kubota H; Matsumoto M; Nakayama KI; Kuroda S
    Genes Cells; 2019 Jan; 24(1):82-93. PubMed ID: 30417516
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative proteomics revealed novel proteins associated with molecular subtypes of breast cancer.
    Suman S; Basak T; Gupta P; Mishra S; Kumar V; Sengupta S; Shukla Y
    J Proteomics; 2016 Oct; 148():183-93. PubMed ID: 27498393
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ranking Cancer Proteins by Integrating PPI Network and Protein Expression Profiles.
    Ren J; Shang L; Wang Q; Li J
    Biomed Res Int; 2019; 2019():3907195. PubMed ID: 30723737
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proteomic strategies to characterize signaling pathways.
    Harsha HC; Pinto SM; Pandey A
    Methods Mol Biol; 2013; 1007():359-77. PubMed ID: 23666735
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proteomic and phosphoproteomic analyses reveal extensive phosphorylation of regulatory proteins in developing rice anthers.
    Ye J; Zhang Z; Long H; Zhang Z; Hong Y; Zhang X; You C; Liang W; Ma H; Lu P
    Plant J; 2015 Nov; 84(3):527-44. PubMed ID: 26360816
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CPPA: A Web Tool for Exploring Proteomic and Phosphoproteomic Data in Cancer.
    Hu GS; Zheng ZZ; He YH; Wang DC; Liu W
    J Proteome Res; 2023 Feb; 22(2):368-373. PubMed ID: 36507870
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative tissue proteomic investigation of invasive ductal carcinoma of breast with luminal B HER2 positive and HER2 enriched subtypes towards potential diagnostic and therapeutic biomarkers.
    Pendharkar N; Gajbhiye A; Taunk K; RoyChoudhury S; Dhali S; Seal S; Mane A; Abhang S; Santra MK; Chaudhury K; Rapole S
    J Proteomics; 2016 Jan; 132():112-30. PubMed ID: 26642762
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phosphoproteomic strategies in cancer research: a minireview.
    Sürmen MG; Sürmen S; Ali A; Musharraf SG; Emekli N
    Analyst; 2020 Nov; 145(22):7125-7149. PubMed ID: 32996481
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A multi-model statistical approach for proteomic spectral count quantitation.
    Branson OE; Freitas MA
    J Proteomics; 2016 Jul; 144():23-32. PubMed ID: 27260494
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proteomic profiling of extracellular vesicles allows for human breast cancer subtyping.
    Rontogianni S; Synadaki E; Li B; Liefaard MC; Lips EH; Wesseling J; Wu W; Altelaar M
    Commun Biol; 2019; 2():325. PubMed ID: 31508500
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identifying potential markers in Breast Cancer subtypes using plasma label-free proteomics.
    Corrêa S; Panis C; Binato R; Herrera AC; Pizzatti L; Abdelhay E
    J Proteomics; 2017 Jan; 151():33-42. PubMed ID: 27498391
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expression and methylation patterns partition luminal-A breast tumors into distinct prognostic subgroups.
    Netanely D; Avraham A; Ben-Baruch A; Evron E; Shamir R
    Breast Cancer Res; 2016 Jul; 18(1):74. PubMed ID: 27386846
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An Integrative Analysis of Tumor Proteomic and Phosphoproteomic Profiles to Examine the Relationships Between Kinase Activity and Phosphorylation.
    Arshad OA; Danna V; Petyuk VA; Piehowski PD; Liu T; Rodland KD; McDermott JE
    Mol Cell Proteomics; 2019 Aug; 18(8 suppl 1):S26-S36. PubMed ID: 31227600
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrated proteomic and phosphoproteomic analyses of cisplatin-sensitive and resistant bladder cancer cells reveal CDK2 network as a key therapeutic target.
    Jung JH; You S; Oh JW; Yoon J; Yeon A; Shahid M; Cho E; Sairam V; Park TD; Kim KP; Kim J
    Cancer Lett; 2018 Nov; 437():1-12. PubMed ID: 30145203
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proteomic analysis of phosphorylation in cancer.
    Ruprecht B; Lemeer S
    Expert Rev Proteomics; 2014 Jun; 11(3):259-67. PubMed ID: 24666026
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The amino acid transporter SLC7A5 confers a poor prognosis in the highly proliferative breast cancer subtypes and is a key therapeutic target in luminal B tumours.
    El Ansari R; Craze ML; Miligy I; Diez-Rodriguez M; Nolan CC; Ellis IO; Rakha EA; Green AR
    Breast Cancer Res; 2018 Mar; 20(1):21. PubMed ID: 29566741
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proteomic maps of breast cancer subtypes.
    Tyanova S; Albrechtsen R; Kronqvist P; Cox J; Mann M; Geiger T
    Nat Commun; 2016 Jan; 7():10259. PubMed ID: 26725330
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proteomics Profiling of KAIMRC1 in Comparison to MDA-MB231 and MCF-7.
    Alghanem B; Ali R; Nehdi A; Al Zahrani H; Altolayyan A; Shaibah H; Baz O; Alhallaj A; Moresco JJ; Diedrich JK; Yates JR; Boudjelal M
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32570693
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.