BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 30578064)

  • 1. In vivo functional assessment of a novel degradable metal and elastomeric scaffold-based tissue engineered heart valve.
    Coyan GN; D'Amore A; Matsumura Y; Pedersen DD; Luketich SK; Shanov V; Katz WE; David TE; Wagner WR; Badhwar V
    J Thorac Cardiovasc Surg; 2019 May; 157(5):1809-1816. PubMed ID: 30578064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute In Vivo Functional Assessment of a Biodegradable Stentless Elastomeric Tricuspid Valve.
    Coyan GN; da Mota Silveira-Filho L; Matsumura Y; Luketich SK; Katz W; Badhwar V; Wagner WR; D'Amore A
    J Cardiovasc Transl Res; 2020 Oct; 13(5):796-805. PubMed ID: 32040766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early in vivo experience with tissue-engineered trileaflet heart valves.
    Sodian R; Hoerstrup SP; Sperling JS; Daebritz S; Martin DP; Moran AM; Kim BS; Schoen FJ; Vacanti JP; Mayer JE
    Circulation; 2000 Nov; 102(19 Suppl 3):III22-9. PubMed ID: 11082357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of an Off-the-Shelf Tissue-Engineered Sinus Valve for Transcatheter Pulmonary Valve Replacement: a Proof-of-Concept Study.
    Motta SE; Fioretta ES; Dijkman PE; Lintas V; Behr L; Hoerstrup SP; Emmert MY
    J Cardiovasc Transl Res; 2018 Jun; 11(3):182-191. PubMed ID: 29560553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First percutaneous implantation of a completely tissue-engineered self-expanding pulmonary heart valve prosthesis using a newly developed delivery system: a feasibility study in sheep.
    Spriestersbach H; Prudlo A; Bartosch M; Sanders B; Radtke T; Baaijens FP; Hoerstrup SP; Berger F; Schmitt B
    Cardiovasc Interv Ther; 2017 Jan; 32(1):36-47. PubMed ID: 27139179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tri-layered elastomeric scaffolds for engineering heart valve leaflets.
    Masoumi N; Annabi N; Assmann A; Larson BL; Hjortnaes J; Alemdar N; Kharaziha M; Manning KB; Mayer JE; Khademhosseini A
    Biomaterials; 2014 Sep; 35(27):7774-85. PubMed ID: 24947233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of elastomeric scaffolds with curvilinear fibrous structures for heart valve leaflet engineering.
    Hobson CM; Amoroso NJ; Amini R; Ungchusri E; Hong Y; D'Amore A; Sacks MS; Wagner WR
    J Biomed Mater Res A; 2015 Sep; 103(9):3101-6. PubMed ID: 25771748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heart valve scaffold fabrication: Bioinspired control of macro-scale morphology, mechanics and micro-structure.
    D'Amore A; Luketich SK; Raffa GM; Olia S; Menallo G; Mazzola A; D'Accardi F; Grunberg T; Gu X; Pilato M; Kameneva MV; Badhwar V; Wagner WR
    Biomaterials; 2018 Jan; 150():25-37. PubMed ID: 29031049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Successful Feasibility Human Trial of a New Self-Expandable Percutaneous Pulmonary Valve (Pulsta Valve) Implantation Using Knitted Nitinol Wire Backbone and Trileaflet α-Gal-Free Porcine Pericardial Valve in the Native Right Ventricular Outflow Tract.
    Kim GB; Song MK; Bae EJ; Park EA; Lee W; Lim HG; Kim YJ
    Circ Cardiovasc Interv; 2018 Jun; 11(6):e006494. PubMed ID: 29871940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcatheter aortic valve implantation using anatomically oriented, marrow stromal cell-based, stented, tissue-engineered heart valves: technical considerations and implications for translational cell-based heart valve concepts.
    Emmert MY; Weber B; Behr L; Sammut S; Frauenfelder T; Wolint P; Scherman J; Bettex D; Grünenfelder J; Falk V; Hoerstrup SP
    Eur J Cardiothorac Surg; 2014 Jan; 45(1):61-8. PubMed ID: 23657551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ heart valve tissue engineering using a bioresorbable elastomeric implant - From material design to 12 months follow-up in sheep.
    Kluin J; Talacua H; Smits AI; Emmert MY; Brugmans MC; Fioretta ES; Dijkman PE; Söntjens SH; Duijvelshoff R; Dekker S; Janssen-van den Broek MW; Lintas V; Vink A; Hoerstrup SP; Janssen HM; Dankers PY; Baaijens FP; Bouten CV
    Biomaterials; 2017 May; 125():101-117. PubMed ID: 28253994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal elastomeric scaffold leaflet shape for pulmonary heart valve leaflet replacement.
    Fan R; Bayoumi AS; Chen P; Hobson CM; Wagner WR; Mayer JE; Sacks MS
    J Biomech; 2013 Feb; 46(4):662-9. PubMed ID: 23294966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue-engineered heart valves: intra-operative protocol.
    Gallo M; Bianco R; Bottio T; Naso F; Franci P; Zanella F; Perona G; Busetto R; Spina M; Gandaglia A; Gerosa G
    J Cardiovasc Transl Res; 2013 Aug; 6(4):660-1. PubMed ID: 23765554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Failure of decellularized porcine small intestinal submucosa as a heart valved conduit.
    van Rijswijk JW; Talacua H; Mulder K; van Hout GPJ; Bouten CVC; Gründeman PF; Kluin J
    J Thorac Cardiovasc Surg; 2020 Oct; 160(4):e201-e215. PubMed ID: 32151387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applicability of handmade expanded polytetrafluoroethylene trileaflet-valved conduits for pulmonary valve reconstruction: An ex vivo and in vivo study.
    Kan CD; Wang JN; Chen WL; Lu PJ; Chan MY; Lin CH; Hsieh WC
    J Thorac Cardiovasc Surg; 2018 Feb; 155(2):765-774.e3. PubMed ID: 29050816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Percutaneous pulmonary valve replacement: autologous tissue-engineered valved stents.
    Metzner A; Stock UA; Iino K; Fischer G; Huemme T; Boldt J; Braesen JH; Bein B; Renner J; Cremer J; Lutter G
    Cardiovasc Res; 2010 Dec; 88(3):453-61. PubMed ID: 20595320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo remodeling and structural characterization of fibrin-based tissue-engineered heart valves in the adult sheep model.
    Flanagan TC; Sachweh JS; Frese J; Schnöring H; Gronloh N; Koch S; Tolba RH; Schmitz-Rode T; Jockenhoevel S
    Tissue Eng Part A; 2009 Oct; 15(10):2965-76. PubMed ID: 19320544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-vitro and in-vivo evaluation of a novel bioprosthetic pulmonary valve for use in congenital heart surgery.
    Rasmussen J; Skov SN; Nielsen DB; Jensen IL; Tjørnild MJ; Johansen P; Hjortdal VE
    J Cardiothorac Surg; 2019 Jan; 14(1):6. PubMed ID: 30626416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computed tomography detects tissue formation in a stented engineered heart valve.
    de Heer LM; Budde RP; Vonken EJ; Baaijens FP; Gründeman PF; van Herwerden LA; Hoerstrup SP; Kluin J
    Ann Thorac Surg; 2011 Jul; 92(1):344-5. PubMed ID: 21718873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PGA (polyglycolic acid)-P4HB (poly-4-hydroxybutyrate)-Based Bioengineered Valves in the Rat Aortic Circulation.
    Książek AA; Mitchell KJ; Cesarovic N; Schwarzwald CC; Hoerstrup SP; Weber B
    J Heart Valve Dis; 2016 May; 25(3):380-388. PubMed ID: 27989051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.