These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 30578259)

  • 1. Structure-Based Engineering of Amidase from
    Tang XL; Jin JQ; Wu ZM; Jin LQ; Zheng RC; Zheng YG
    Appl Environ Microbiol; 2019 Mar; 85(5):. PubMed ID: 30578259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocatalytic hydrolysis of chlorinated nicotinamides by a superior AS family amidase and its application in enzymatic production of 2-chloronicotinic acid.
    Zheng RC; Jin JQ; Wu ZM; Tang XL; Jin LQ; Zheng YG
    Bioorg Chem; 2018 Feb; 76():81-87. PubMed ID: 29153589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rational Regulation of Reaction Specificity of Nitrilase for Efficient Biosynthesis of 2-Chloronicotinic Acid through a Single Site Mutation.
    Dai AD; Tang XL; Wu ZM; Tang JT; Zheng RC; Zheng YG
    Appl Environ Microbiol; 2022 Mar; 88(5):e0239721. PubMed ID: 35020449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly regio- and enantioselective synthesis of chiral intermediate for pregabalin using one-pot bienzymatic cascade of nitrilase and amidase.
    Zhang Q; Wu ZM; Hao CL; Tang XL; Zheng RC; Zheng YG
    Appl Microbiol Biotechnol; 2019 Jul; 103(14):5617-5626. PubMed ID: 31104100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering Streptomyces coelicolor Carbonyl Reductase for Efficient Atorvastatin Precursor Synthesis.
    Li M; Zhang ZJ; Kong XD; Yu HL; Zhou J; Xu JH
    Appl Environ Microbiol; 2017 Jun; 83(12):. PubMed ID: 28389544
    [No Abstract]   [Full Text] [Related]  

  • 6. Mining and characterization of two amidase signature family amidases from Brevibacterium epidermidis ZJB-07021 by an efficient genome mining approach.
    Ruan LT; Zheng RC; Zheng YG
    Protein Expr Purif; 2016 Oct; 126():16-25. PubMed ID: 27180252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of multicatalytic properties of nitrilase from Paraburkholderia graminis for efficient biosynthesis of 2-chloronicotinic acid.
    Tang XL; Li YY; Mao Y; Zheng RC; Zheng YG
    Biotechnol Bioeng; 2022 Dec; 119(12):3421-3431. PubMed ID: 36042572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface engineering of a Pantoea agglomerans-derived phenylalanine aminomutase for the improvement of (S)-β-phenylalanine biosynthesis.
    Zhou L; Wang Y; Liu H; Han L; Zhang W; Cui W; Liu Z; Zhou Z
    Biochem Biophys Res Commun; 2019 Oct; 518(2):204-211. PubMed ID: 31409485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-function analysis of Staphylococcus aureus amidase reveals the determinants of peptidoglycan recognition and cleavage.
    Büttner FM; Zoll S; Nega M; Götz F; Stehle T
    J Biol Chem; 2014 Apr; 289(16):11083-11094. PubMed ID: 24599952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of Pseudomonas aeruginosa lipase by directed evolution for enhanced amidase activity: mechanistic implication for amide hydrolysis by serine hydrolases.
    Nakagawa Y; Hasegawa A; Hiratake J; Sakata K
    Protein Eng Des Sel; 2007 Jul; 20(7):339-46. PubMed ID: 17616559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploitation and characterization of three versatile amidase super family members from Delftia tsuruhatensis ZJB-05174.
    Wu ZM; Zheng RC; Zheng YG
    Enzyme Microb Technol; 2016 May; 86():93-102. PubMed ID: 26992798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combination of phenylpyruvic acid (PPA) pathway engineering and molecular engineering of L-amino acid deaminase improves PPA production with an Escherichia coli whole-cell biocatalyst.
    Hou Y; Hossain GS; Li J; Shin HD; Du G; Liu L
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2183-91. PubMed ID: 26552798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical and mutagenic investigations of fatty acid amide hydrolase: evidence for a family of serine hydrolases with distinct catalytic properties.
    Patricelli MP; Lovato MA; Cravatt BF
    Biochemistry; 1999 Aug; 38(31):9804-12. PubMed ID: 10433686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directed evolution of a family 26 glycoside hydrolase: endo-β-1, 4-mannanase from Pantoea agglomerans A021.
    Wang J; Zhang Q; Huang Z; Liu Z
    J Biotechnol; 2013 Sep; 167(3):350-6. PubMed ID: 23835158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement in the catalytic activity of Sulfolobus solfataricus P2 (+)-γ-lactamase by semi-rational design with the aid of a newly established high-throughput screening method.
    Gao S; Lu Y; Li Y; Huang R; Zheng G
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):251-263. PubMed ID: 30310965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-Based Engineering of an Artificially Generated NADP
    Hayashi J; Seto T; Akita H; Watanabe M; Hoshino T; Yoneda K; Ohshima T; Sakuraba H
    Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28363957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Secretory expression and characterization of a novel amidase from Kluyvera cryocrescens in Bacillus subtilis.
    Kang XM; Cai X; Liu ZQ; Zheng YG
    Biotechnol Lett; 2020 Nov; 42(11):2367-2377. PubMed ID: 32656682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clarifying the catalytic roles of conserved residues in the amidase signature family.
    Patricelli MP; Cravatt BF
    J Biol Chem; 2000 Jun; 275(25):19177-84. PubMed ID: 10764768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the Ser-Ser-Lys catalytic triad mechanism of peptide amidase: computational studies of the ground state, transition state, and intermediate.
    Valiña AL; Mazumder-Shivakumar D; Bruice TC
    Biochemistry; 2004 Dec; 43(50):15657-72. PubMed ID: 15595822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and characterization of a thermostable and cobalt-dependent amidase from Burkholderia phytofirmans ZJB-15079 for efficient synthesis of (R)-3,3,3-trifluoro-2-hydroxy-2-methylpropionic acid.
    Wu ZM; Zheng RC; Tang XL; Zheng YG
    Appl Microbiol Biotechnol; 2017 Mar; 101(5):1953-1964. PubMed ID: 27832306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.