These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
589 related articles for article (PubMed ID: 30578270)
1. l-Rhamnose Metabolism in Clostridium beijerinckii Strain DSM 6423. Diallo M; Simons AD; van der Wal H; Collas F; Houweling-Tan B; Kengen SWM; López-Contreras AM Appl Environ Microbiol; 2019 Mar; 85(5):. PubMed ID: 30578270 [TBL] [Abstract][Full Text] [Related]
2. Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca. van der Wal H; Sperber BL; Houweling-Tan B; Bakker RR; Brandenburg W; López-Contreras AM Bioresour Technol; 2013 Jan; 128():431-7. PubMed ID: 23201525 [TBL] [Abstract][Full Text] [Related]
3. Genome and transcriptome of the natural isopropanol producer Clostridium beijerinckii DSM6423. Máté de Gérando H; Wasels F; Bisson A; Clement B; Bidard F; Jourdier E; López-Contreras AM; Lopes Ferreira N BMC Genomics; 2018 Apr; 19(1):242. PubMed ID: 29636009 [TBL] [Abstract][Full Text] [Related]
4. Sugarcane bagasse hydrolysates as feedstock to produce the isopropanol-butanol-ethanol fuel mixture: Effect of lactic acid derived from microbial contamination on Clostridium beijerinckii DSM 6423. Vieira CFDS; Codogno MC; Maugeri Filho F; Maciel Filho R; Mariano AP Bioresour Technol; 2021 Jan; 319():124140. PubMed ID: 32971332 [TBL] [Abstract][Full Text] [Related]
5. Utilization of banana crop residue as an agricultural bioresource for the production of acetone-butanol-ethanol by Clostridium beijerinckii YVU1. Reddy LV; Veda AS; Wee YJ Lett Appl Microbiol; 2020 Jan; 70(1):36-41. PubMed ID: 31631376 [TBL] [Abstract][Full Text] [Related]
6. Butanol fermentation of the brown seaweed Laminaria digitata by Clostridium beijerinckii DSM-6422. Hou X; From N; Angelidaki I; Huijgen WJJ; Bjerre AB Bioresour Technol; 2017 Aug; 238():16-21. PubMed ID: 28432948 [TBL] [Abstract][Full Text] [Related]
7. Artificial symbiosis for acetone-butanol-ethanol (ABE) fermentation from alkali extracted deshelled corn cobs by co-culture of Clostridium beijerinckii and Clostridium cellulovorans. Wen Z; Wu M; Lin Y; Yang L; Lin J; Cen P Microb Cell Fact; 2014 Jul; 13(1):92. PubMed ID: 25023325 [TBL] [Abstract][Full Text] [Related]
8. Simultaneous glucose and xylose uptake by an acetone/butanol/ethanol producing laboratory Clostridium beijerinckii strain SE-2. Zhang J; Zhu W; Xu H; Li Y; Hua D; Jin F; Gao M; Zhang X Biotechnol Lett; 2016 Apr; 38(4):611-7. PubMed ID: 26721235 [TBL] [Abstract][Full Text] [Related]
9. Butanol production from wheat straw hydrolysate using Clostridium beijerinckii. Qureshi N; Saha BC; Cotta MA Bioprocess Biosyst Eng; 2007 Nov; 30(6):419-27. PubMed ID: 17609986 [TBL] [Abstract][Full Text] [Related]
10. Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran. Liu Z; Ying Y; Li F; Ma C; Xu P J Ind Microbiol Biotechnol; 2010 May; 37(5):495-501. PubMed ID: 20393827 [TBL] [Abstract][Full Text] [Related]
11. Modulation of the Acetone/Butanol Ratio during Fermentation of Corn Stover-Derived Hydrolysate by Clostridium beijerinckii Strain NCIMB 8052. Liu ZY; Yao XQ; Zhang Q; Liu Z; Wang ZJ; Zhang YY; Li FL Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28130305 [TBL] [Abstract][Full Text] [Related]
12. Metabolic engineering of Clostridium acetobutylicum for the enhanced production of isopropanol-butanol-ethanol fuel mixture. Jang YS; Malaviya A; Lee J; Im JA; Lee SY; Lee J; Eom MH; Cho JH; Seung do Y Biotechnol Prog; 2013; 29(4):1083-8. PubMed ID: 23606675 [TBL] [Abstract][Full Text] [Related]
13. Process integration for simultaneous saccharification, fermentation, and recovery (SSFR): production of butanol from corn stover using Clostridium beijerinckii P260. Qureshi N; Singh V; Liu S; Ezeji TC; Saha BC; Cotta MA Bioresour Technol; 2014 Feb; 154():222-8. PubMed ID: 24398150 [TBL] [Abstract][Full Text] [Related]
14. Butanol production from agricultural residues: Impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Ezeji T; Qureshi N; Blaschek HP Biotechnol Bioeng; 2007 Aug; 97(6):1460-9. PubMed ID: 17274071 [TBL] [Abstract][Full Text] [Related]
15. Butanol production by Clostridium beijerinckii. Part I: use of acid and enzyme hydrolyzed corn fiber. Qureshi N; Ezeji TC; Ebener J; Dien BS; Cotta MA; Blaschek HP Bioresour Technol; 2008 Sep; 99(13):5915-22. PubMed ID: 18061440 [TBL] [Abstract][Full Text] [Related]
16. Enhanced isopropanol and n-butanol production by supplying exogenous acetic acid via co-culturing two clostridium strains from cassava bagasse hydrolysate. Zhang S; Qu C; Huang X; Suo Y; Liao Z; Wang J J Ind Microbiol Biotechnol; 2016 Jul; 43(7):915-25. PubMed ID: 27116556 [TBL] [Abstract][Full Text] [Related]
17. Impact of zinc supplementation on the improved fructose/xylose utilization and butanol production during acetone-butanol-ethanol fermentation. Wu YD; Xue C; Chen LJ; Bai FW J Biosci Bioeng; 2016 Jan; 121(1):66-72. PubMed ID: 26149719 [TBL] [Abstract][Full Text] [Related]
18. Involvement of a bacterial microcompartment in the metabolism of fucose and rhamnose by Clostridium phytofermentans. Petit E; LaTouf WG; Coppi MV; Warnick TA; Currie D; Romashko I; Deshpande S; Haas K; Alvelo-Maurosa JG; Wardman C; Schnell DJ; Leschine SB; Blanchard JL PLoS One; 2013; 8(1):e54337. PubMed ID: 23382892 [TBL] [Abstract][Full Text] [Related]
19. Enhanced robustness in acetone-butanol-ethanol fermentation with engineered Clostridium beijerinckii overexpressing adhE2 and ctfAB. Lu C; Yu L; Varghese S; Yu M; Yang ST Bioresour Technol; 2017 Nov; 243():1000-1008. PubMed ID: 28747008 [TBL] [Abstract][Full Text] [Related]
20. Effective isopropanol-butanol (IB) fermentation with high butanol content using a newly isolated Youn SH; Lee KM; Kim KY; Lee SM; Woo HM; Um Y Biotechnol Biofuels; 2016; 9():230. PubMed ID: 27800016 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]