BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 30578531)

  • 21. Control of postharvest fungal diseases in fruits using external application of RNAi.
    de Oliveira Filho JG; Silva GDC; Cipriano L; Gomes M; Egea MB
    J Food Sci; 2021 Aug; 86(8):3341-3348. PubMed ID: 34272735
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibitory effect of gamma irradiation and its application for control of postharvest green mold decay of Satsuma mandarins.
    Jeong RD; Chu EH; Lee GW; Cho C; Park HJ
    Int J Food Microbiol; 2016 Oct; 234():1-8. PubMed ID: 27356109
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antifungal Activity of Some Constituents of Origanum vulgare L. Essential Oil Against Postharvest Disease of Peach Fruit.
    Elshafie HS; Mancini E; Sakr S; De Martino L; Mattia CA; De Feo V; Camele I
    J Med Food; 2015 Aug; 18(8):929-34. PubMed ID: 25599273
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biocontrol of Postharvest Anthracnose of Mango Fruit with Debaryomyces Nepalensis and Effects on Storage Quality and Postharvest Physiology.
    Luo S; Wan B; Feng S; Shao Y
    J Food Sci; 2015 Nov; 80(11):M2555-63. PubMed ID: 26445226
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antifungal potential of secondary metabolites involved in the interaction between citrus pathogens.
    Costa JH; Wassano CI; Angolini CFF; Scherlach K; Hertweck C; Pacheco Fill T
    Sci Rep; 2019 Dec; 9(1):18647. PubMed ID: 31819142
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Control of postharvest grey mould decay of nectarine by tea polyphenol combined with tea saponin.
    Yang XP; Jiang XD; Chen JJ; Zhang SS
    Lett Appl Microbiol; 2013 Dec; 57(6):502-9. PubMed ID: 23909749
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification and characterization of a new Bacillus atrophaeus strain B5 as biocontrol agent of postharvest anthracnose disease in soursop (Annona muricata) and avocado (Persea americana).
    Guardado-Valdivia L; Tovar-Pérez E; Chacón-López A; López-García U; Gutiérrez-Martínez P; Stoll A; Aguilera S
    Microbiol Res; 2018 May; 210():26-32. PubMed ID: 29625655
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Import risk analysis of fruit from Spain to Italy.
    Pani G; Molinu MG; Venditti T; Dore A; Ladu G; D'Hallewin G
    Commun Agric Appl Biol Sci; 2012; 77(3):181-6. PubMed ID: 23878972
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SWEET PEPPER: ASPECTS OF THE BIOLOGY AND CONTROL OF FUSARIUM FRUIT ROT.
    O'Neill T; Mayne S
    Commun Agric Appl Biol Sci; 2015; 80(3):569-73. PubMed ID: 27141754
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review.
    Dukare AS; Paul S; Nambi VE; Gupta RK; Singh R; Sharma K; Vishwakarma RK
    Crit Rev Food Sci Nutr; 2019; 59(9):1498-1513. PubMed ID: 29336595
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A combinatorial approach of Monarda citriodora essential oil (MEO) and linalool vapors to control fruit rot of Citrus limon caused by a new pathogen, Aspergillus foetidus, and its underlying mode of action.
    Poovathumkadavil Thambi N; Rani P; Sharma M; Katoch M
    J Appl Microbiol; 2023 Dec; 134(12):. PubMed ID: 38040653
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Essential oils to control Botrytis cinerea in vitro and in vivo on plum fruits.
    Aminifard MH; Mohammadi S
    J Sci Food Agric; 2013 Jan; 93(2):348-53. PubMed ID: 22740387
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition of citrus fungal pathogens by using lactic acid bacteria.
    Gerez CL; Carbajo MS; Rollán G; Torres Leal G; Font de Valdez G
    J Food Sci; 2010 Aug; 75(6):M354-9. PubMed ID: 20722936
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antifungal activity of hypothemycin against Peronophythora litchii in vitro and in vivo.
    Xu L; Xue J; Wu P; Wang D; Lin L; Jiang Y; Duan X; Wei X
    J Agric Food Chem; 2013 Oct; 61(42):10091-5. PubMed ID: 24106914
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Antifungal mechanisms of α-terpineol and terpene-4-alcohol as the critical components of Melaleuca alternifolia oil in the inhibition of rot disease caused by Aspergillus ochraceus in postharvest grapes.
    Kong Q; Zhang L; An P; Qi J; Yu X; Lu J; Ren X
    J Appl Microbiol; 2019 Apr; 126(4):1161-1174. PubMed ID: 30614164
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Control of Bull's-Eye Rot of Apple Caused by Neofabraea perennans and Neofabraea kienholzii Using Pre- and Postharvest Fungicides.
    Aguilar CG; Mazzola M; Xiao CL
    Plant Dis; 2018 May; 102(5):905-910. PubMed ID: 30673373
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Screening preharvest/postharvest strategies to prevent fruit rot decay.
    Vorstermans B; Creemers P
    Commun Agric Appl Biol Sci; 2007; 72(4):909-15. PubMed ID: 18396828
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combination of UV-C treatment and Metschnikowia pulcherrimas for controlling Alternaria rot in postharvest winter jujube fruit.
    Guo D; Zhu L; Hou X
    J Food Sci; 2015 Jan; 80(1):M137-41. PubMed ID: 25495035
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antifungal properties of organic extracts of eight Cistus L. species against postharvest citrus sour rot.
    Karim H; Boubaker H; Askarne L; Talibi I; Msanda F; Boudyach EH; Saadi B; Ait Ben Aoumar A
    Lett Appl Microbiol; 2016 Jan; 62(1):16-22. PubMed ID: 26458008
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Baseline Sensitivity of
    Wang F; Saito S; Michailides TJ; Xiao CL
    Plant Dis; 2021 Nov; 105(11):3653-3656. PubMed ID: 34085850
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.