BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 30578975)

  • 1. Local Field Potentials Reflect Dopaminergic and Non-Dopaminergic Activities within the Primate Midbrain.
    Pasquereau B; Tremblay L; Turner RS
    Neuroscience; 2019 Feb; 399():167-183. PubMed ID: 30578975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pedunculopontine tegmental nucleus neurons provide reward, sensorimotor, and alerting signals to midbrain dopamine neurons.
    Hong S; Hikosaka O
    Neuroscience; 2014 Dec; 282():139-55. PubMed ID: 25058502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Limited encoding of effort by dopamine neurons in a cost-benefit trade-off task.
    Pasquereau B; Turner RS
    J Neurosci; 2013 May; 33(19):8288-300. PubMed ID: 23658169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhythmic oscillations in the midbrain dopaminergic nuclei in mice.
    Oberto VJ; Matsumoto J; Pompili MN; Todorova R; Papaleo F; Nishijo H; Venance L; Vandecasteele M; Wiener SI
    Front Cell Neurosci; 2023; 17():1131313. PubMed ID: 37426551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissociation between sustained single-neuron spiking and transient β-LFP oscillations in primate motor cortex.
    Rule ME; Vargas-Irwin CE; Donoghue JP; Truccolo W
    J Neurophysiol; 2017 Apr; 117(4):1524-1543. PubMed ID: 28100654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive spike-artifact removal from local field potentials uncovers prominent beta and gamma band neuronal synchronization.
    Banaie Boroujeni K; Tiesinga P; Womelsdorf T
    J Neurosci Methods; 2020 Jan; 330():108485. PubMed ID: 31705936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior.
    Hollerman JR; Tremblay L; Schultz W
    Prog Brain Res; 2000; 126():193-215. PubMed ID: 11105648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential contribution of Ih to the integration of excitatory synaptic inputs in substantia nigra pars compacta and ventral tegmental area dopaminergic neurons.
    Masi A; Narducci R; Resta F; Carbone C; Kobayashi K; Mannaioni G
    Eur J Neurosci; 2015 Nov; 42(9):2699-706. PubMed ID: 26354486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Specific Component of the Evoked Potential Mirrors Phasic Dopamine Neuron Activity during Conditioning.
    Pan WX; Dudman JT
    J Neurosci; 2015 Jul; 35(29):10451-9. PubMed ID: 26203140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cost of obtaining rewards enhances the reward prediction error signal of midbrain dopamine neurons.
    Tanaka S; O'Doherty JP; Sakagami M
    Nat Commun; 2019 Aug; 10(1):3674. PubMed ID: 31417077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noradrenaline and dopamine neurons in the reward/effort trade-off: a direct electrophysiological comparison in behaving monkeys.
    Varazzani C; San-Galli A; Gilardeau S; Bouret S
    J Neurosci; 2015 May; 35(20):7866-77. PubMed ID: 25995472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Midbrain dopamine neurons encode a quantitative reward prediction error signal.
    Bayer HM; Glimcher PW
    Neuron; 2005 Jul; 47(1):129-41. PubMed ID: 15996553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. State-dependent spike and local field synchronization between motor cortex and substantia nigra in hemiparkinsonian rats.
    Brazhnik E; Cruz AV; Avila I; Wahba MI; Novikov N; Ilieva NM; McCoy AJ; Gerber C; Walters JR
    J Neurosci; 2012 Jun; 32(23):7869-80. PubMed ID: 22674263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dopamine neurons encode errors in predicting movement trigger occurrence.
    Pasquereau B; Turner RS
    J Neurophysiol; 2015 Feb; 113(4):1110-23. PubMed ID: 25411459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beta Oscillations in Monkey Striatum Encode Reward Prediction Error Signals.
    Basanisi R; Marche K; Combrisson E; Apicella P; Brovelli A
    J Neurosci; 2023 May; 43(18):3339-3352. PubMed ID: 37015808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Causal Role for the Pedunculopontine Nucleus in Human Instrumental Learning.
    Skvortsova V; Palminteri S; Buot A; Karachi C; Welter ML; Grabli D; Pessiglione M
    Curr Biol; 2021 Mar; 31(5):943-954.e5. PubMed ID: 33352119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Action potential and calcium dependence of tonic somatodendritic dopamine release in the Substantia Nigra pars compacta.
    Yee AG; Forbes B; Cheung PY; Martini A; Burrell MH; Freestone PS; Lipski J
    J Neurochem; 2019 Feb; 148(4):462-479. PubMed ID: 30203851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Persistent elevation of D-Aspartate enhances NMDA receptor-mediated responses in mouse substantia nigra pars compacta dopamine neurons.
    Krashia P; Ledonne A; Nobili A; Cordella A; Errico F; Usiello A; D'Amelio M; Mercuri NB; Guatteo E; Carunchio I
    Neuropharmacology; 2016 Apr; 103():69-78. PubMed ID: 26707656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential Control of Dopaminergic Excitability and Locomotion by Cholinergic Inputs in Mouse Substantia Nigra.
    Estakhr J; Abazari D; Frisby K; McIntosh JM; Nashmi R
    Curr Biol; 2017 Jul; 27(13):1900-1914.e4. PubMed ID: 28648825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct representations of cognitive and motivational signals in midbrain dopamine neurons.
    Matsumoto M; Takada M
    Neuron; 2013 Sep; 79(5):1011-24. PubMed ID: 23932490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.