These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Woody stem galls interact with foliage to affect community associations. Cooper WR; Rieske LK Environ Entomol; 2009 Apr; 38(2):417-24. PubMed ID: 19389291 [TBL] [Abstract][Full Text] [Related]
4. How do sugars regulate plant growth and development? New insight into the role of trehalose-6-phosphate. O'Hara LE; Paul MJ; Wingler A Mol Plant; 2013 Mar; 6(2):261-74. PubMed ID: 23100484 [TBL] [Abstract][Full Text] [Related]
5. Leaf-derived cecidomyiid galls are sinks in Machilus thunbergii (Lauraceae) leaves. Huang MY; Huang WD; Chou HM; Lin KH; Chen CC; Chen PJ; Chang YT; Yang CM Physiol Plant; 2014 Nov; 152(3):475-85. PubMed ID: 24621096 [TBL] [Abstract][Full Text] [Related]
6. Iridoid glycoside variation in the invasive plant Dalmatian toadflax, Linaria dalmatica (Plantaginaceae), and sequestration by the biological control agent, Calophasia lunula. Jamieson MA; Bowers MD J Chem Ecol; 2010 Jan; 36(1):70-9. PubMed ID: 20077129 [TBL] [Abstract][Full Text] [Related]
7. Phenology of the Dalmatian Toadflax Biological Control Agent Mecinus janthiniformis (Coleoptera: Curculionidae) in Utah. Willden SA; Evans EW Environ Entomol; 2018 Feb; 47(1):1-7. PubMed ID: 29145607 [TBL] [Abstract][Full Text] [Related]
8. Insect egg-induced physiological changes and transcriptional reprogramming leading to gall formation. Oates CN; Denby KJ; Myburg AA; Slippers B; Naidoo S Plant Cell Environ; 2021 Feb; 44(2):535-547. PubMed ID: 33125164 [TBL] [Abstract][Full Text] [Related]
9. Summer Development and Survivorship of the Weed Biocontrol Agent, Mecinus janthiniformis (Coleoptera: Curculionidae), Within Stems of Its Host, Dalmatian Toadflax (Lamiales: Plantaginaceae), in Utah. Willden SA; Evans EW Environ Entomol; 2019 Jun; 48(3):533-539. PubMed ID: 31034548 [TBL] [Abstract][Full Text] [Related]
10. Antioxidant metabolism in galls due to the extended phenotypes of the associated organisms. Ferreira BG; Oliveira DC; Moreira ASFP; Faria AP; Guedes LM; França MGC; Álvarez R; Isaias RMS PLoS One; 2018; 13(10):e0205364. PubMed ID: 30346955 [TBL] [Abstract][Full Text] [Related]
11. Cytological and histochemical gradients on two Copaifera langsdorffii Desf. (Fabaceae)--Cecidomyiidae gall systems. de Oliveira DC; Carneiro RG; Magalhães TA; Isaias RM Protoplasma; 2011 Oct; 248(4):829-37. PubMed ID: 21207084 [TBL] [Abstract][Full Text] [Related]
12. Analysis of low abundant trehalose-6-phosphate and related metabolites in Medicago truncatula by hydrophilic interaction liquid chromatography-triple quadrupole mass spectrometry. Mata AT; Jorge TF; Ferreira J; do Rosário Bronze M; Branco D; Fevereiro P; Araújo S; António C J Chromatogr A; 2016 Dec; 1477():30-38. PubMed ID: 27908495 [TBL] [Abstract][Full Text] [Related]
13. Tetraneura ulmi (Hemiptera: Eriosomatinae) Induces Oxidative Stress and Alters Antioxidant Enzyme Activities in Elm Leaves. Kmiec K; Rubinowska K; Golan K Environ Entomol; 2018 Aug; 47(4):840-847. PubMed ID: 29672728 [TBL] [Abstract][Full Text] [Related]
15. Phenotypic plasticity and similarity among gall morphotypes on a superhost, Baccharis reticularia (Asteraceae). Formiga AT; Silveira FA; Fernandes GW; Isaias RM Plant Biol (Stuttg); 2015 Mar; 17(2):512-21. PubMed ID: 25124804 [TBL] [Abstract][Full Text] [Related]
16. Insect-induced effects on plants and possible effectors used by galling and leaf-mining insects to manipulate their host-plant. Giron D; Huguet E; Stone GN; Body M J Insect Physiol; 2016 Jan; 84():70-89. PubMed ID: 26723843 [TBL] [Abstract][Full Text] [Related]
17. Eavesdropping on gall-plant interactions: the importance of the signaling function of induced volatiles. Barônio GJ; Oliveira DC Plant Signal Behav; 2019; 14(11):1665454. PubMed ID: 31538533 [TBL] [Abstract][Full Text] [Related]
18. A new galling insect model enhances photosynthetic activity in an obligate holoparasitic plant. Murakami R; Ushima R; Sugimoto R; Tamaoki D; Karahara I; Hanba Y; Wakasugi T; Tsuchida T Sci Rep; 2021 Jun; 11(1):13013. PubMed ID: 34155293 [TBL] [Abstract][Full Text] [Related]
19. Differences in Monoterpene Biosynthesis and Accumulation in Pistacia palaestina Leaves and Aphid-Induced Galls. Rand K; Bar E; Ari MB; Davidovich-Rikanati R; Dudareva N; Inbar M; Lewinsohn E J Chem Ecol; 2017 Feb; 43(2):143-152. PubMed ID: 28108840 [TBL] [Abstract][Full Text] [Related]
20. Insect galls of Restinga de Marambaia (Barra de Guaratiba, Rio de Janeiro, RJ). Maia VC; Silva LO Braz J Biol; 2016 Apr; 76(3):787-95. PubMed ID: 27097094 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]