BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 30579051)

  • 1. Sulfur and iron cycles promoted nitrogen and phosphorus removal in electrochemically assisted vertical flow constructed wetland treating wastewater treatment plant effluent with high S/N ratio.
    Wang Y; Lin Z; Wang Y; Huang W; Wang J; Zhou J; He Q
    Water Res; 2019 Mar; 151():20-30. PubMed ID: 30579051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron storage and resupply modes during sulfur cycle enhanced nitrogen removal stability in electrochemically assisted constructed wetlands under low temperature.
    Wang Y; Lin Z; Huang W; He S; Zhou J
    Bioresour Technol; 2020 Mar; 300():122704. PubMed ID: 31911318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance and mechanism of sacrificed iron anode coupled with constructed wetlands (E-Fe) for simultaneous nitrogen and phosphorus removal.
    Zhou M; Cao J; Qiu Y; Lu Y; Guo J; Li C; Wang Y; Hao L; Ren H
    Environ Sci Pollut Res Int; 2023 Apr; 30(17):51245-51260. PubMed ID: 36809628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous nitrate and phosphate removal from wastewater lacking organic matter through microbial oxidation of pyrrhotite coupled to nitrate reduction.
    Li R; Morrison L; Collins G; Li A; Zhan X
    Water Res; 2016 Jun; 96():32-41. PubMed ID: 27017573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyrrhotite-sulfur-limestone composite for high rate nitrogen and phosphorus removal from wastewater: Column study.
    Yang Y; Huang G; Chen C; Li R
    Chemosphere; 2024 Jan; 347():140711. PubMed ID: 37981019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous removal of nitrate nitrogen and orthophosphate by electroreduction and electrochemical precipitation.
    Lu C; Chen Y; Shuang C; Wang Z; Tian Y; Song H; Li A; Chen D; Li X
    Water Res; 2024 Feb; 250():121000. PubMed ID: 38118253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupled pyrite and sulfur autotrophic denitrification for simultaneous removal of nitrogen and phosphorus from secondary effluent: feasibility, performance and mechanisms.
    Chen Z; Pang C; Wen Q
    Water Res; 2023 Sep; 243():120422. PubMed ID: 37523921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel constructed wetland based on iron carbon substrates: performance optimization and mechanisms of simultaneous removal of nitrogen and phosphorus.
    Liu Y; Feng L; Liu Y; Zhang L
    Environ Sci Pollut Res Int; 2023 Feb; 30(9):23035-23046. PubMed ID: 36319923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering-scale application of sulfur-driven autotrophic denitrification wetland for advanced treatment of municipal tailwater.
    Li Y; Han Q; Li B
    Bioresour Technol; 2023 Jul; 379():129035. PubMed ID: 37037329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly efficient removal of nitrogen and phosphorus in an electrolysis-integrated horizontal subsurface-flow constructed wetland amended with biochar.
    Gao Y; Zhang W; Gao B; Jia W; Miao A; Xiao L; Yang L
    Water Res; 2018 Aug; 139():301-310. PubMed ID: 29660619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of domestic wastewater treatment using Moringa oleifera coagulant coupled with vertical flow constructed wetland in Kibera Slum, Kenya.
    Kilingo FM; Bernard Z; Hongbin C
    Environ Sci Pollut Res Int; 2022 May; 29(24):36589-36607. PubMed ID: 35064879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydraulic flow direction alters nutrients removal performance and microbial mechanisms in electrolysis-assisted constructed wetlands.
    Wang Y; Zhou J; Shi S; Zhou J; He X; He L
    Bioresour Technol; 2021 Apr; 325():124692. PubMed ID: 33453660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The performance and mechanism of iron-modified aluminum sludge substrate tidal flow constructed wetlands for simultaneous nitrogen and phosphorus removal in the effluent of wastewater treatment plants.
    Zhou M; Cao J; Lu Y; Zhu L; Li C; Wang Y; Hao L; Luo J; Ren H
    Sci Total Environ; 2022 Nov; 847():157569. PubMed ID: 35882329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High Nitrogen Removal in a Constructed Wetland Receiving Treated Wastewater in a Cold Climate.
    Uusheimo S; Huotari J; Tulonen T; Aalto SL; Rissanen AJ; Arvola L
    Environ Sci Technol; 2018 Nov; 52(22):13343-13350. PubMed ID: 30358987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microelectrolysis-integrated constructed wetland with sponge iron filler to simultaneously enhance nitrogen and phosphorus removal.
    Hou X; Chu L; Wang Y; Song X; Liu Y; Li D; Zhao X
    Bioresour Technol; 2023 Sep; 384():129270. PubMed ID: 37290705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathways regulating the enhanced nitrogen removal in a pyrite based vertical-flow constructed wetland.
    Xu Z; Qiao W; Song X; Wang Y
    Bioresour Technol; 2021 Apr; 325():124705. PubMed ID: 33516146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autotrophic denitrification based on sulfur-iron minerals: advanced wastewater treatment technology with simultaneous nitrogen and phosphorus removal.
    Yuan Q; Gao J; Liu P; Huang Z; Li L
    Environ Sci Pollut Res Int; 2024 Jan; 31(5):6766-6781. PubMed ID: 38159185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-occurrence of autotrophic and heterotrophic denitrification in electrolysis assisted constructed wetland packing with coconut fiber as solid carbon source.
    Fan X; Li J; He L; Wang Y; Zhou J; Zhou J; Liu C
    Chemosphere; 2022 Aug; 301():134762. PubMed ID: 35490751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amorphous Fe substrate enhances nitrogen and phosphorus removal in sulfur autotrophic process.
    Zhou K; Zhang H; Guo D; Gao S; Pei Y; Hou L
    Water Res; 2024 Jun; 256():121581. PubMed ID: 38614032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Element sulfur-based autotrophic denitrification constructed wetland as an efficient approach for nitrogen removal from low C/N wastewater.
    Wang HC; Liu Y; Yang YM; Fang YK; Luo S; Cheng HY; Wang AJ
    Water Res; 2022 Nov; 226():119258. PubMed ID: 36272196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.