BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 30579109)

  • 1. Lithium disilicate glass-ceramic vs translucent zirconia polycrystals bonded to distinct substrates: Fatigue failure load, number of cycles for failure, survival rates, and stress distribution.
    Pereira GKR; Graunke P; Maroli A; Zucuni CP; Prochnow C; Valandro LF; Caldas RA; Bacchi A
    J Mech Behav Biomed Mater; 2019 Mar; 91():122-130. PubMed ID: 30579109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatigue failure load of two resin-bonded zirconia-reinforced lithium silicate glass-ceramics: Effect of ceramic thickness.
    Monteiro JB; Riquieri H; Prochnow C; Guilardi LF; Pereira GKR; Borges ALS; de Melo RM; Valandro LF
    Dent Mater; 2018 Jun; 34(6):891-900. PubMed ID: 29588077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatigue strength of several dental ceramics indicated for CAD-CAM monolithic restorations.
    Nishioka G; Prochnow C; Firmino A; Amaral M; Bottino MA; Valandro LF; Renata Marques de M
    Braz Oral Res; 2018 Jun; 32():e53. PubMed ID: 29898029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatigue behavior of ultrafine tabletop ceramic restorations.
    Abu-Izze FO; Ramos GF; Borges ALS; Anami LC; Bottino MA
    Dent Mater; 2018 Sep; 34(9):1401-1409. PubMed ID: 29934124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fracture Resistance of Monolithic Glass-Ceramics Versus Bilayered Zirconia-Based Restorations.
    Hamza TA; Sherif RM
    J Prosthodont; 2019 Jan; 28(1):e259-e264. PubMed ID: 29044828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fracture load of ceramic restorations after fatigue loading.
    Baladhandayutham B; Lawson NC; Burgess JO
    J Prosthet Dent; 2015 Aug; 114(2):266-71. PubMed ID: 25985741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatigue failure load of an adhesively-cemented lithium disilicate glass-ceramic: Conventional ceramic etching vs etch & prime one-step primer.
    Scherer MM; Prochnow C; Venturini AB; Pereira GKR; Burgo TAL; Rippe MP; Valandro LF
    Dent Mater; 2018 Aug; 34(8):1134-1143. PubMed ID: 29789162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatigue failure load of zirconia-reinforced lithium silicate glass ceramic cemented to a dentin analogue: Effect of etching time and hydrofluoric acid concentration.
    Monteiro JB; Oliani MG; Guilardi LF; Prochnow C; Rocha Pereira GK; Bottino MA; de Melo RM; Valandro LF
    J Mech Behav Biomed Mater; 2018 Jan; 77():375-382. PubMed ID: 28988143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical fatigue degradation of ceramics versus resin composites for dental restorations.
    Belli R; Geinzer E; Muschweck A; Petschelt A; Lohbauer U
    Dent Mater; 2014 Apr; 30(4):424-32. PubMed ID: 24553249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fatigue resistance of all-ceramic fixed partial dentures - Fatigue tests and finite element analysis.
    Heintze SD; Monreal D; Reinhardt M; Eser A; Peschke A; Reinshagen J; Rousson V
    Dent Mater; 2018 Mar; 34(3):494-507. PubMed ID: 29395474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Load-bearing properties of minimal-invasive monolithic lithium disilicate and zirconia occlusal onlays: finite element and theoretical analyses.
    Ma L; Guess PC; Zhang Y
    Dent Mater; 2013 Jul; 29(7):742-51. PubMed ID: 23683531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Survival of resin infiltrated ceramics under influence of fatigue.
    Aboushelib MN; Elsafi MH
    Dent Mater; 2016 Apr; 32(4):529-34. PubMed ID: 26764178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the fatigue behavior of adhesive bonding of the lithium disilicate glass ceramic with three resin cements using rotating fatigue method.
    Yassini E; Mirzaei M; Alimi A; Rahaeifard M
    J Mech Behav Biomed Mater; 2016 Aug; 61():62-69. PubMed ID: 26849028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fracture load of metal-ceramic, monolithic, and bi-layered zirconia-based posterior fixed dental prostheses after thermo-mechanical cycling.
    López-Suárez C; Castillo-Oyagüe R; Rodríguez-Alonso V; Lynch CD; Suárez-García MJ
    J Dent; 2018 Jun; 73():97-104. PubMed ID: 29678585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How does the piston material affect the in vitro mechanical behavior of dental ceramics?
    Weber KR; Benetti P; Della Bona Á; Corazza PH; Medeiros JA; Lodi E; Borba M
    J Prosthet Dent; 2018 Nov; 120(5):747-754. PubMed ID: 30017165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resin cements formulated with thio-urethanes can strengthen porcelain and increase bond strength to ceramics.
    Bacchi A; Spazzin AO; de Oliveira GR; Pfeifer C; Cesar PF
    J Dent; 2018 Jun; 73():50-56. PubMed ID: 29630920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of cementation surface modifications on fracture resistance of zirconia.
    Srikanth R; Kosmac T; Della Bona A; Yin L; Zhang Y
    Dent Mater; 2015 Apr; 31(4):435-42. PubMed ID: 25687628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Internal adjustments decrease the fatigue failure load of bonded simplified lithium disilicate restorations.
    Rodrigues CDS; Guilardi LF; Follak AC; Prochnow C; May LG; Valandro LF
    Dent Mater; 2018 Sep; 34(9):e225-e235. PubMed ID: 29853196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of endodontic access preparation on the failure load of lithium disilicate glass-ceramic restorations.
    Qeblawi D; Hill T; Chlosta K
    J Prosthet Dent; 2011 Nov; 106(5):328-36. PubMed ID: 22024183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of core material, veneering porcelain, and fabrication technique on the biaxial flexural strength and weibull analysis of selected dental ceramics.
    Lin WS; Ercoli C; Feng C; Morton D
    J Prosthodont; 2012 Jul; 21(5):353-62. PubMed ID: 22462639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.