These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 30579304)

  • 1. Multi-dimensional spectral gap optimization of order parameters (SGOOP) through conditional probability factorization.
    Smith Z; Pramanik D; Tsai ST; Tiwary P
    J Chem Phys; 2018 Dec; 149(23):234105. PubMed ID: 30579304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How wet should be the reaction coordinate for ligand unbinding?
    Tiwary P; Berne BJ
    J Chem Phys; 2016 Aug; 145(5):054113. PubMed ID: 27497545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward Automated Sampling of Polymorph Nucleation and Free Energies with the SGOOP and Metadynamics.
    Zou Z; Tsai ST; Tiwary P
    J Phys Chem B; 2021 Dec; 125(47):13049-13056. PubMed ID: 34788047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SGOOP-d: Estimating Kinetic Distances and Reaction Coordinate Dimensionality for Rare Event Systems from Biased/Unbiased Simulations.
    Tsai ST; Smith Z; Tiwary P
    J Chem Theory Comput; 2021 Nov; 17(11):6757-6765. PubMed ID: 34662516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reaction coordinates and rate constants for liquid droplet nucleation: Quantifying the interplay between driving force and memory.
    Tsai ST; Smith Z; Tiwary P
    J Chem Phys; 2019 Oct; 151(15):154106. PubMed ID: 31640371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting reaction coordinates in energy landscapes with diffusion anisotropy.
    Tiwary P; Berne BJ
    J Chem Phys; 2017 Oct; 147(15):152701. PubMed ID: 29055314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral gap optimization of order parameters for sampling complex molecular systems.
    Tiwary P; Berne BJ
    Proc Natl Acad Sci U S A; 2016 Mar; 113(11):2839-44. PubMed ID: 26929365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward Achieving Efficient and Accurate Ligand-Protein Unbinding with Deep Learning and Molecular Dynamics through RAVE.
    Lamim Ribeiro JM; Tiwary P
    J Chem Theory Comput; 2019 Jan; 15(1):708-719. PubMed ID: 30525598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Sampling Simulations of Ligand Unbinding Kinetics Controlled by Protein Conformational Changes.
    Zhou Y; Zou R; Kuang G; Långström B; Halldin C; Ågren H; Tu Y
    J Chem Inf Model; 2019 Sep; 59(9):3910-3918. PubMed ID: 31454236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating drug-target association and dissociation mechanisms using metadynamics-based algorithms.
    Cavalli A; Spitaleri A; Saladino G; Gervasio FL
    Acc Chem Res; 2015 Feb; 48(2):277-85. PubMed ID: 25496113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stretching of single poly-ubiquitin molecules revisited: dynamic disorder in the non-exponential unfolding kinetics.
    Zheng Y; Bian Y; Zhao N; Hou Z
    J Chem Phys; 2014 Mar; 140(12):125102. PubMed ID: 24697481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Confronting pitfalls of AI-augmented molecular dynamics using statistical physics.
    Pant S; Smith Z; Wang Y; Tajkhorshid E; Tiwary P
    J Chem Phys; 2020 Dec; 153(23):234118. PubMed ID: 33353347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unbinding Kinetics of a p38 MAP Kinase Type II Inhibitor from Metadynamics Simulations.
    Casasnovas R; Limongelli V; Tiwary P; Carloni P; Parrinello M
    J Am Chem Soc; 2017 Apr; 139(13):4780-4788. PubMed ID: 28290199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LINES: Log-Probability Estimation via Invertible Neural Networks for Enhanced Sampling.
    Odstrcil RE; Dutta P; Liu J
    J Chem Theory Comput; 2022 Oct; 18(10):6297-6309. PubMed ID: 36099438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Past-future information bottleneck for sampling molecular reaction coordinate simultaneously with thermodynamics and kinetics.
    Wang Y; Ribeiro JML; Tiwary P
    Nat Commun; 2019 Aug; 10(1):3573. PubMed ID: 31395868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free-energy landscapes and thermodynamic parameters of complex molecules from nonequilibrium simulation trajectories.
    Chapagain PP; Gerstman BS; Bhandari YR; Rimal D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061905. PubMed ID: 21797401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retardation of Protein Dynamics by Trehalose in Dehydrated Systems of Photosynthetic Reaction Centers. Insights from Electron Transfer and Thermal Denaturation Kinetics.
    Malferrari M; Francia F; Venturoli G
    J Phys Chem B; 2015 Oct; 119(43):13600-18. PubMed ID: 26083980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient free energy calculations by combining two complementary tempering sampling methods.
    Xie L; Shen L; Chen ZN; Yang M
    J Chem Phys; 2017 Jan; 146(2):024103. PubMed ID: 28088161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein Folding Free Energy Landscape along the Committor - the Optimal Folding Coordinate.
    Krivov SV
    J Chem Theory Comput; 2018 Jul; 14(7):3418-3427. PubMed ID: 29791148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of a generalized fisher equation for global optimization in chemical kinetics.
    Villaverde AF; Ross J; Morán F; Balsa-Canto E; Banga JR
    J Phys Chem A; 2011 Aug; 115(30):8426-36. PubMed ID: 21711023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.